A007647 Numbers k such that k*10^k + 1 is prime.
1, 3, 9, 21, 363, 2161, 4839, 49521, 105994, 207777
Offset: 1
Examples
For k = 3 we get (3*10^3)+1 = (3*1000)+1 = 3000 + 1 = 3001, which is prime. For k = 9 we get 9*10^9+1 = 9*1000000000+1 = 9000000000+1 = 9000000001, which is prime.
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 363, p. 84, Ellipses, Paris 2008.
- H. Dubner, Generalized Cullen numbers, J. Rec. Math., 21 (No. 3, 1989), 190-191.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Daniel Hermle, First Coordinated Generalized Cullen Prime Search.
- Guenter Loeh, Generalized Cullen primes.
Crossrefs
Cf. A004023.
Programs
-
PARI
is(n)=ispseudoprime(n*10^n+1) \\ Charles R Greathouse IV, Feb 17 2017
Extensions
More terms from Julien Peter Benney (jpbenney(AT)ftml.net), Jun 11 2005
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 05 2007
a(10) from Loeh link by Ray Chandler, Apr 10 2016
Comments