cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007654 Numbers k such that the standard deviation of 1,...,k is an integer.

Original entry on oeis.org

0, 3, 48, 675, 9408, 131043, 1825200, 25421763, 354079488, 4931691075, 68689595568, 956722646883, 13325427460800, 185599261804323, 2585064237799728, 36005300067391875, 501489136705686528, 6984842613812219523, 97286307456665386800, 1355023461779503195683
Offset: 1

Views

Author

Keywords

Comments

Gives solutions k to the Diophantine equation m^2 = k*(k+1)/3. - Anton Lorenz Vrba (anton(AT)a-l-v.net), Jun 28 2005
If x=a(n), y=a(n+1), z=a(n+2) are three consecutive terms, then x^2 - 16*y*x + 14*x*z + 16*y^2 - 16*z*y + z^2 = 144. The formula is symmetric in x and z, so it is also valid for x=a(n+2), y=a(n+1), z=a(n). - Alexander Samokrutov, Jul 02 2015
From Bernard Schott, Apr 09 2021 (Start):
Corresponding solutions m (of first comment) are in A011944.
Equivalently, numbers k such that k/3 and k+1 are both perfect squares. (End)

References

  • Guy Alarcon and Yves Duval, TS: Préparation au Concours Général, RMS, Collection Excellence, Paris, 2010, chapitre 13, Questions proposées aux élèves de Terminale S, Exercice 1, p. 220, p. 223.
  • D. A. Benaron, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[0,3]; [n le 2 select I[n] else 14*Self(n-1)-Self(n-2)+6: n in [1..20]]; // Vincenzo Librandi, Mar 05 2016
  • Mathematica
    RecurrenceTable[{a[m] == 14 a[m - 1] - a[m - 2] + 6, a[1] == 0, a[2] == 3}, a, {m, 1, 17}] (* Michael De Vlieger, Jul 02 2015 *)
    CoefficientList[Series[-3 x^2*(1 + x)/(-1 + x)/(1 - 14 x + x^2), {x, 0, 17}], x] (* Michael De Vlieger, Feb 02 2016 *)
  • PARI
    concat(0,3*Vec((1+x)/(1-x)/(1-14*x+x^2)+O(x^98))) \\ Charles R Greathouse IV, May 14 2013
    

Formula

a(n) = 3*A098301(n-1).
a(m) = 14*a(m-1) - a(m-2) + 6.
G.f.: -3*x^2*(1+x)/(-1+x)/(1-14*x+x^2) = -3 + (1/2)/(-1+x) + (1/2)*(-97*x+7)/(1-14*x+x^2). - R. J. Mathar, Nov 20 2007
a(n) = (-2 + (7-4*sqrt(3))^n*(7+4*sqrt(3)) + (7-4*sqrt(3))*(7+4*sqrt(3))^n)/4. - Colin Barker, Mar 05 2016
From Bernard Schott, Apr 09 2021: (Start)
a(n) = 3 * A001353(n-1)^2.
a(n) = A055793(n+1) - 1 = A001075(n-1)^2 - 1. (End)
2*a(n) = A011943(n)-1. - R. J. Mathar, Mar 16 2023

Extensions

Corrected by Keith Lloyd, Mar 15 1996