Original entry on oeis.org
0, 1, 14, 195, 2716, 37829, 526890, 7338631, 102213944, 1423656585, 19828978246, 276182038859, 3846719565780, 53577891882061, 746243766783074, 10393834843080975, 144767444036350576, 2016350381665827089, 28084137899285228670, 391161580208327374291, 5448177985017298011404
Offset: 1
G.f. = x^2 + 14*x^3 + 195*x^4 + 2716*x^5 + 37829*x^6 + 526890*x^7 + ...
- D. A. Benaron, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Indranil Ghosh, Table of n, a(n) for n = 1..874 (terms 1..100 from T. D. Noe)
- R. Flórez, R. A. Higuita and A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
- D. S. Hale, 3165. Perfect Squares of the Form 48n^2+1, Math. Gaz., Oct. 1966, page 307.
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- Murray S. Klamkin, Perfect Squares of the Form (m^2 - 1)a_n^2 + t, Math. Mag., 1969, page 111.
- E. K. Lloyd, The standard deviation of 1, 2, ..., n, Pell's equation and rational triangles, The Mathematical Gazette, Vol. 81, No. 491 (Jul., 1997), pp. 231-243.
- Dino Lorenzini and Z. Xiang, Integral points on variable separated curves, Preprint 2016.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (14,-1).
Cf.
A000217,
A001570,
A003500,
A011922,
A011943,
A011945,
A028230,
A046184,
A049310,
A053120,
A055793,
A067900,
A098301,
A101950,
A103974.
Chebyshev sequence U(n, m):
A000027 (m=1),
A001353 (m=2),
A001109 (m=3),
A001090 (m=4),
A004189 (m=5),
A004191 (m=6), this sequence (m=7),
A077412 (m=8),
A049660 (m=9),
A075843 (m=10),
A077421 (m=11),
A077423 (m=12),
A097309 (m=13),
A097311 (m=14),
A097313 (m=15),
A029548 (m=16),
A029547 (m=17),
A144128 (m=18),
A078987 (m=19),
A097316 (m=33).
-
m:=7;; a:=[0,1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
-
[n le 2 select n-1 else 14*Self(n-1)-Self(n-2): n in [1..70]]; // Vincenzo Librandi, Feb 02 2016
-
0,seq(orthopoly[U](n,7),n=0..30); # Robert Israel, Feb 04 2016
-
Table[GegenbauerC[n, 1, 7], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
LinearRecurrence[{14,-1}, {0,1}, 20] (* Vincenzo Librandi, Feb 02 2016 *)
ChebyshevU[Range[21] -2, 7] (* G. C. Greubel, Dec 23 2019 *)
Table[Sum[Binomial[n, 2 k - 1]*7^(n - 2 k + 1)*48^(k - 1), {k, 1, n}], {n, 0, 15}] (* Horst H. Manninger, Jan 16 2022 *)
-
concat(0, Vec((x^2/(1-14*x+x^2) + O(x^30)))) \\ Michel Marcus, Feb 02 2016
-
vector(21, n, polchebyshev(n-2, 2, 7) ) \\ G. C. Greubel, Dec 23 2019
-
[lucas_number1(n,14,1) for n in range(0,20)] # Zerinvary Lajos, Jun 25 2008
-
[chebyshev_U(n,7) for n in (-1..20)] # G. C. Greubel, Dec 23 2019
Original entry on oeis.org
1, -3, 13, -48, 181, -675, 2521, -9408, 35113, -131043, 489061, -1825200, 6811741, -25421763, 94875313, -354079488, 1321442641, -4931691075, 18405321661, -68689595568, 256353060613, -956722646883, 3570537526921, -13325427460800, 49731172316281
Offset: 0
-
/* By definition: */
m:=15; R:=PowerSeriesRing(Integers(), m);
A001570:=Coefficients(R!((1-x)/(1-14*x+x^2)));
A007654:=Coefficients(R!(-3*x^2*(1+x)/(-1+x)/(1-14*x+x^2)));
&cat[[A001570[i],-A007654[i]]: i in [1..m-2]]; // Bruno Berselli, Feb 05 2013
-
seriestolist(series((x^2+x+1)/((1-x)*(x+1)*(x^2+4*x+1)), x=0,25));
-
LinearRecurrence[{-4,0,4,1},{1,-3,13,-48},30] (* Harvey P. Dale, Jun 15 2018 *)
A132592
X-values of solutions to the equation X*(X + 1) - 8*Y^2 = 0.
Original entry on oeis.org
0, 8, 288, 9800, 332928, 11309768, 384199200, 13051463048, 443365544448, 15061377048200, 511643454094368, 17380816062160328, 590436102659356800, 20057446674355970888, 681362750825443653408, 23146276081390728245000, 786292024016459316676608, 26710782540478226038759688
Offset: 0
Cf.
A001541,
A058331,
A001079,
A037270,
A055792,
A071253,
A108741,
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121.
-
I:=[0,8,288]; [n le 3 select I[n] else 35*Self(n-1)-35*Self(n-2)+ Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 24 2018
-
Table[Round[N[Sinh[2 n ArcCosh[Sqrt[2]]]^2, 100]], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *)
LinearRecurrence[{35, -35, 1}, {0, 8, 288}, 30] (* Vincenzo Librandi, Dec 24 2018 *)
-
A132592 = [0, 8]
for n in range(2, 18): A132592.append(34 * A132592[-1] - A132592[-2] + 16)
print(A132592) # Karl-Heinz Hofmann, Sep 20 2022
A011943
Numbers k such that any group of k consecutive integers has integral standard deviation (viz. A011944(k)).
Original entry on oeis.org
1, 7, 97, 1351, 18817, 262087, 3650401, 50843527, 708158977, 9863382151, 137379191137, 1913445293767, 26650854921601, 371198523608647, 5170128475599457, 72010600134783751, 1002978273411373057, 13969685227624439047, 194572614913330773601, 2710046923559006391367
Offset: 1
- P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238. - N. J. A. Sloane, Mar 03 2022
- Robert Israel, Table of n, a(n) for n = 1..788
- Jim Delany, Roger Douglass, Mike Breen and Roger B. Eggleton, Problem E 3302: Averaging to Integers, The American Mathematical Monthly, Vol. 97, No. 5 (May, 1990), p. 432.
- R. K. Guy, Letter to N. J. A. Sloane concerning A001075, A011943, A094347 [Scanned and annotated letter, included with permission]
- Tanya Khovanova, Recursive Sequences
- Jiri Lebl and Daniel Lichtblau, Uniqueness of certain polynomials constant on a hyperplane, arXiv:0808.0284 [math.CV], 2008-2010.
- E. Keith Lloyd, The Standard Deviation of 1, 2,..., n: Pell's Equation and Rational Triangles, Math. Gaz. vol 81 (1997), 231-243.
- Ronald S. Tiberio, Solution to Problem E 3302 [Broken link]
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (14,-1).
-
I:=[1,7]; [n le 2 select I[n] else 14*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 19 2015
-
seq(orthopoly[T](n,7), n = 0..50); # Robert Israel, Jun 02 2015
a := n -> (-1)^(n+1)*hypergeom([n-1, -n+1], [1/2], 4):
seq(simplify(a(n)), n=1..20); # Peter Luschny, Jul 26 2020
-
LinearRecurrence[{14,-1},{1,7},30] (* Harvey P. Dale, Dec 16 2013 *)
a[n_]:=1/2((7-4 Sqrt[3])^n+(7+4 Sqrt[3])^n); Table[a[n] // Simplify,{n,0,20}] (* Gerry Martens, May 30 2015 *)
-
a(n)=if(n<0,0,subst(poltchebi(n),x,7))
-
g(n) = forstep(x=1,n,3,y=(x^2-1)/3;if(issquare(y),print1(x","))) \\ Cino Hilliard, Mar 05 2005
A132596
X-values of solutions to the equation X*(X + 1) - 6*Y^2 = 0.
Original entry on oeis.org
0, 2, 24, 242, 2400, 23762, 235224, 2328482, 23049600, 228167522, 2258625624, 22358088722, 221322261600, 2190864527282, 21687323011224, 214682365584962, 2125136332838400, 21036680962799042, 208241673295152024
Offset: 0
- Clifford A. Pickover, The Loom of God, Tapestries of Mathematics and Mysticism, Sterling, NY, 2009, page 33.
A322699
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is 1/2 * (-1 + Sum_{j=0..k} binomial(2*k,2*j)*(n+1)^(k-j)*n^j).
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 8, 2, 0, 0, 49, 24, 3, 0, 0, 288, 242, 48, 4, 0, 0, 1681, 2400, 675, 80, 5, 0, 0, 9800, 23762, 9408, 1444, 120, 6, 0, 0, 57121, 235224, 131043, 25920, 2645, 168, 7, 0, 0, 332928, 2328482, 1825200, 465124, 58080, 4374, 224, 8, 0
Offset: 0
Square array begins:
0, 0, 0, 0, 0, 0, 0, ...
0, 1, 8, 49, 288, 1681, 9800, ...
0, 2, 24, 242, 2400, 23762, 235224, ...
0, 3, 48, 675, 9408, 131043, 1825200, ...
0, 4, 80, 1444, 25920, 465124, 8346320, ...
0, 5, 120, 2645, 58080, 1275125, 27994680, ...
0, 6, 168, 4374, 113568, 2948406, 76545000, ...
-
Unprotect[Power]; 0^0 := 1; Protect[Power]; Table[(-1 + Sum[Binomial[2 k, 2 j] (# + 1)^(k - j)*#^j, {j, 0, k}])/2 &[n - k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Jan 01 2019 *)
nmax = 9; row[n_] := LinearRecurrence[{4n+3, -4n-3, 1}, {0, n, 4n(n+1)}, nmax+1]; T = Array[row, nmax+1, 0]; A[n_, k_] := T[[n+1, k+1]];
Table[A[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 06 2019 *)
-
def ncr(n, r)
return 1 if r == 0
(n - r + 1..n).inject(:*) / (1..r).inject(:*)
end
def A(k, n)
(0..n).map{|i| (0..k).inject(-1){|s, j| s + ncr(2 * k, 2 * j) * (i + 1) ** (k - j) * i ** j} / 2}
end
def A322699(n)
a = []
(0..n).each{|i| a << A(i, n - i)}
ary = []
(0..n).each{|i|
(0..i).each{|j|
ary << a[i - j][j]
}
}
ary
end
p A322699(10)
A221075
Simple continued fraction expansion of an infinite product.
Original entry on oeis.org
2, 12, 1, 24, 1, 192, 1, 360, 1, 2700, 1, 5040, 1, 37632, 1, 70224, 1, 524172, 1, 978120, 1, 7300800, 1, 13623480, 1, 101687052, 1, 189750624, 1, 1416317952, 1, 2642885280, 1, 19726764300, 1, 36810643320, 1
Offset: 0
Product {n >= 0} {1 - 2*(2 - sqrt(3))^(4*n+3)}/{1 - 2*(2 - sqrt(3))^(4*n+1)} = 2.07715 13807 08976 70415 ...
= 2 + 1/(12 + 1/(1 + 1/(24 + 1/(1 + 1/(192 + 1/(1 + 1/(360 + ...))))))).
Since (2 - sqrt(3))^3 = 26 - 15*sqrt(3) we have the following simple continued fraction expansion:
product {n >= 0} {1 - 2*(26 - 15*sqrt(3))^(4*n+3)}/{1 - 2*(26 - 15*sqrt(3))^(4*n+1)} = 1.04000 05921 62729 43797 ... = 1 + 1/(24 + 1/(1 + 1/(2700 + 1/(1 + 1/(70224 + 1/(1 + 1/(7300800 + ...))))))).
- P. Bala, Some simple continued fraction expansions for an infinite product, Part 1
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,14,0,-14,0,-1,0,1).
Cf.
A001353,
A007654,
A045899,
A076139,
A076140,
A098301,
A123480,
A174500,
A217855,
A221073 (m = 2),
A221074 (m = 3),
A221076 (m = 5).
A132584
a(0)=0, a(1)=4; for n > 1, a(n) = 18*a(n-1) - a(n-2) + 8.
Original entry on oeis.org
0, 4, 80, 1444, 25920, 465124, 8346320, 149768644, 2687489280, 48225038404, 865363202000, 15528312597604, 278644263554880, 5000068431390244, 89722587501469520, 1610006506595061124, 28890394531209630720, 518417095055178291844, 9302617316461999622480
Offset: 0
-
I:=[0,4,80]; [n le 3 select I[n] else 18*Self(n-1)-Self(n-2)+8: n in [1..30]]; // Vincenzo Librandi, Dec 24 2018
-
LinearRecurrence[{19, -19, 1}, {0, 4, 80}, 40] (* Vincenzo Librandi, Dec 24 2018 *)
nxt[{a_,b_}]:={b,18b-a+8}; NestList[nxt,{0,4},20][[;;,1]] (* Harvey P. Dale, Aug 25 2024 *)
A011944
a(n) = 14*a(n-1) - a(n-2) with a(0) = 0, a(1) = 2.
Original entry on oeis.org
0, 2, 28, 390, 5432, 75658, 1053780, 14677262, 204427888, 2847313170, 39657956492, 552364077718, 7693439131560, 107155783764122, 1492487533566148, 20787669686161950, 289534888072701152
Offset: 0
-
LinearRecurrence[{14,-1},{0,2},20] (* Harvey P. Dale, Oct 17 2019 *)
Table[2 ChebyshevU[-1 + n, 7], {n, 0, 18}] (* Herbert Kociemba, Jun 05 2022 *)
A132593
Nonnegative integer solutions X to the equation: X(X + 1) - 10*Y^2 = 0.
Original entry on oeis.org
0, 9, 360, 13689, 519840, 19740249, 749609640, 28465426089, 1080936581760, 41047124680809, 1558709801289000, 59189925324301209, 2247658452522156960, 85351831270517663289, 3241121929827149048040, 123077281502161146162249
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- Kenneth M. Wilke, Problem 269, Crux Mathematicorum, Vol. 3, No. 7 (1977), p. 190; Solution to Problem 269 by Lindsay Reynolds, W. J. Blundon and M. S. Klamkin, ibid., Vol. 4, No. 3 (1978), pp. 79-82; Comment by the MaScoT Problems Group, ibid., Vol. 6, No. 2 (1980), pp. 44-46.
- Index entries for linear recurrences with constant coefficients, signature (39,-39,1).
-
LinearRecurrence[{39,-39,1},{0,9,360},30] (* Harvey P. Dale, Jun 01 2014 *)
Showing 1-10 of 16 results.
Comments