A173115
a(n) = -(sin(2*n*arccos(sqrt(3))))^2.
Original entry on oeis.org
0, 24, 2400, 235224, 23049600, 2258625624, 221322261600, 21687323011224, 2125136332838400, 208241673295152024, 20405558846592060000, 1999536525292726728024, 195934173919840627286400
Offset: 0
-
Table[ -Round[N[Sin[2 n ArcCos[Sqrt[3]]]^2, 100]], {n, 0, 20}]
OR
Table[Round[N[ -1/2 + (1/4) (49 + 20 Sqrt[6])^n + (1/4) (49 - 20 Sqrt[6])^n]], {n, 0, 6}]
OR
Clear[a]; a[n_] := a[n] = 99 a[n - 1] - 99 a[n - 2] + a[n - 3]; a[0] = 0; a[1] = 24; a[2] = 2400; Table[a[n], {n, 0, 10}]
-
a(n)=([0,1,0;0,0,1;1,-99,99]^n*[0;24;2400])[1,1] \\ Charles R Greathouse IV, Jun 11 2015
A322699
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is 1/2 * (-1 + Sum_{j=0..k} binomial(2*k,2*j)*(n+1)^(k-j)*n^j).
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 8, 2, 0, 0, 49, 24, 3, 0, 0, 288, 242, 48, 4, 0, 0, 1681, 2400, 675, 80, 5, 0, 0, 9800, 23762, 9408, 1444, 120, 6, 0, 0, 57121, 235224, 131043, 25920, 2645, 168, 7, 0, 0, 332928, 2328482, 1825200, 465124, 58080, 4374, 224, 8, 0
Offset: 0
Square array begins:
0, 0, 0, 0, 0, 0, 0, ...
0, 1, 8, 49, 288, 1681, 9800, ...
0, 2, 24, 242, 2400, 23762, 235224, ...
0, 3, 48, 675, 9408, 131043, 1825200, ...
0, 4, 80, 1444, 25920, 465124, 8346320, ...
0, 5, 120, 2645, 58080, 1275125, 27994680, ...
0, 6, 168, 4374, 113568, 2948406, 76545000, ...
-
Unprotect[Power]; 0^0 := 1; Protect[Power]; Table[(-1 + Sum[Binomial[2 k, 2 j] (# + 1)^(k - j)*#^j, {j, 0, k}])/2 &[n - k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Jan 01 2019 *)
nmax = 9; row[n_] := LinearRecurrence[{4n+3, -4n-3, 1}, {0, n, 4n(n+1)}, nmax+1]; T = Array[row, nmax+1, 0]; A[n_, k_] := T[[n+1, k+1]];
Table[A[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 06 2019 *)
-
def ncr(n, r)
return 1 if r == 0
(n - r + 1..n).inject(:*) / (1..r).inject(:*)
end
def A(k, n)
(0..n).map{|i| (0..k).inject(-1){|s, j| s + ncr(2 * k, 2 * j) * (i + 1) ** (k - j) * i ** j} / 2}
end
def A322699(n)
a = []
(0..n).each{|i| a << A(i, n - i)}
ary = []
(0..n).each{|i|
(0..i).each{|j|
ary << a[i - j][j]
}
}
ary
end
p A322699(10)
A233450
Numbers n such that 3*T(n)+1 is a square, where T = A000217.
Original entry on oeis.org
0, 1, 6, 15, 64, 153, 638, 1519, 6320, 15041, 62566, 148895, 619344, 1473913, 6130878, 14590239, 60689440, 144428481, 600763526, 1429694575, 5946945824, 14152517273, 58868694718, 140095478159, 582740001360, 1386802264321, 5768531318886, 13727927165055
Offset: 1
153 is in the sequence because 3*153*154/2+1 = 188^2.
-
LinearRecurrence[{1, 10, -10, -1, 1}, {0, 1, 6, 15, 64}, 30]
A098297
Member r=12 of the family of Chebyshev sequences S_r(n) defined in A092184.
Original entry on oeis.org
0, 1, 12, 121, 1200, 11881, 117612, 1164241, 11524800, 114083761, 1129312812, 11179044361, 110661130800, 1095432263641, 10843661505612, 107341182792481, 1062568166419200, 10518340481399521, 104120836647576012
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- S. Barbero, U. Cerruti, and N. Murru, On polynomial solutions of the Diophantine equation (x + y - 1)^2 = wxy, Rendiconti Sem. Mat. Univ. Pol. Torino (2020) Vol. 78, No. 1, 5-12.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (11,-11,1).
-
a:=[0,1,12];; for n in [4..30] do a[n]:=11*a[n-1]-11*a[n-2]+ a[n-3]; od; a; # G. C. Greubel, May 24 2019
-
I:=[0,1,12]; [n le 3 select I[n] else 11*Self(n-1)-11*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, May 24 2019
-
LinearRecurrence[{11,-11,1}, {0,1,12}, 30] (* G. C. Greubel, May 24 2019 *)
-
my(x='x+O('x^30)); concat([0], Vec(x*(1+x)/((1-x)*(1-10*x+x^2)))) \\ G. C. Greubel, May 24 2019
-
(x*(1+x)/((1-x)*(1-10*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 24 2019
A175497
Numbers k with the property that k^2 is a product of two distinct triangular numbers.
Original entry on oeis.org
0, 6, 30, 35, 84, 180, 204, 210, 297, 330, 546, 840, 1170, 1189, 1224, 1710, 2310, 2940, 2970, 3036, 3230, 3900, 4914, 6090, 6930, 7134, 7140, 7245, 7440, 8976, 10710, 12654, 14175, 14820, 16296, 16380, 17220, 19866, 22770, 25172, 25944, 29103
Offset: 1
Many terms are in common with
A147779.
Cf.
A152005 (two distinct tetrahedral numbers).
-
isA175497 := proc(n)
local i,Ti,Tj;
if n = 0 then
return true;
end if;
for i from 1 do
Ti := i*(i+1)/2 ;
if Ti > n^2 then
return false;
else
Tj := n^2/Ti ;
if Tj <> Ti and type(Tj,'integer') then
if isA000217(Tj) then # code in A000217
return true;
end if;
end if;
end if;
end do:
end proc:
for n from 0 do
if isA175497(n) then
printf("%d,\n",n);
end if;
end do: # R. J. Mathar, May 26 2016
-
triangularQ[n_] := IntegerQ[Sqrt[8n + 1]];
okQ[n_] := Module[{i, Ti, Tj}, If[n == 0, Return[True]]; For[i = 1, True, i++, Ti = i(i+1)/2; If[Ti > n^2, Return[False], Tj = n^2/Ti; If[Tj != Ti && IntegerQ[Tj], If[ triangularQ[Tj], Return[True]]]]]];
Reap[For[k = 0, k < 30000, k++, If[okQ[k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Jun 13 2023, after R. J. Mathar *)
-
from itertools import count, islice, takewhile
from sympy import divisors
from sympy.ntheory.primetest import is_square
def A175497_gen(startvalue=0): # generator of terms >= startvalue
return filter(lambda k:not k or any(map(lambda d: is_square((d<<3)+1) and is_square((k**2//d<<3)+1), takewhile(lambda d:d**2A175497_list = list(islice(A175497_gen(),20)) # Chai Wah Wu, Mar 13 2023
-
def A175497_list(n):
def A322699_A(k, n):
p, q, r, m = 0, k, 4*k*(k+1), 0
while m < n:
p, q, r = q, r, (4*k+3)*(r-q) + p
m += 1
return p
def a(k, n, j):
if n == 0: return 0
p = A322699_A(k, n)*(A322699_A(k, n)+1)*(2*k+1) - a(k, n-1, 1)
q = (4*k+2)*p - A322699_A(k, n)*(A322699_A(k, n)+1)//2
m = 1
while m < j: p, q = q, (4*k+2)*q - p; m += 1
return p
A = set([a(k, 1, 1) for k in range(n+1)])
k, l, m = 1, 1, 2
while True:
x = a(k, l, m)
if x < max(A):
A |= {x}
A = set(sorted(A)[:n+1])
m += 1
else:
if m == 1 and l == 1:
if k > n:
return sorted(A)
k += 1
elif m > 1:
l += 1; m = 1
elif l > 1:
k += 1; l, m = 1, 1
# Onur Ozkan, Mar 15 2023
A221074
Simple continued fraction expansion of product {n >= 0} {1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+3)}/{1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+1)} at m = 3.
Original entry on oeis.org
2, 8, 1, 16, 1, 96, 1, 176, 1, 968, 1, 1760, 1, 9600, 1, 17440, 1, 95048, 1, 172656, 1, 940896, 1, 1709136, 1, 9313928, 1, 16918720, 1, 92198400, 1, 167478080, 1, 912670088, 1, 1657862096, 1
Offset: 0
Product {n >= 0} {1 - sqrt(3)*(sqrt(3) - sqrt(2))^(4*n+3)}/{1 - sqrt(3)*(sqrt(3) - sqrt(2))^(4*n+1)} = 2.11180 16361 44098 52896 ...
= 2 + 1/(8 + 1/(1 + 1/(16 + 1/(1 + 1/(96 + 1/(1 + 1/(176 + ...))))))).
Since (sqrt(3) - sqrt(2))^3 = 9*sqrt(3) - 11*sqrt(2) we have the following simple continued fraction expansion:
product {n >= 0} {1 - sqrt(3)*(9*sqrt(3) - 11*sqrt(2))^(4*n+3)}/{1 - sqrt(3)*(9*sqrt(3) - 11*sqrt(2))^(4*n+1)} = 1 + 1/(16 + 1/(1 + 1/(968 + 1/(1 + 1/(17440 + 1/(1 + 1/(940896 + ...))))))).
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,10,0,-10,0,-1,0,1).
A169835
Perfect squares that are a product of two triangular numbers.
Original entry on oeis.org
1, 9, 36, 100, 225, 441, 784, 900, 1225, 1296, 2025, 3025, 4356, 6084, 7056, 8281, 11025, 14400, 18496, 23409, 29241, 32400, 36100, 41616, 44100, 53361, 64009, 76176, 88209, 90000, 105625, 108900, 123201, 142884, 164836, 189225, 216225, 246016, 278784, 298116
Offset: 1
-
a169835 n = a169835_list !! (n-1)
a169835_list = f [] (tail a000217_list) (tail a000290_list) where
f ts us'@(u:us) vs'@(v:vs)
| u <= v = f (u : ts) us vs'
| any p $ map (divMod v) ts = v : f ts us' vs
| otherwise = f ts us' vs
where p (q, r) = r == 0 && a010054 q == 1
-- Reinhard Zumkeller, Mar 03 2015
-
N:= 10^6: # to get all terms <= N
A:= select(issqr,{seq(seq(a*(a+1)*b*(b+1)/4,
b = a .. floor(sqrt(1/4+4*N/a/(a+1))-1/2)),a=1..floor(sqrt(4*N)))});
# if using Maple 11 or earlier, uncomment the next line
# sort(convert(A, list)); # Robert Israel, Jan 16 2015
-
M = 10^6; (* to get all terms <= M *)
A = Union[Select[Flatten[Table[Table[(1/4) a (a+1) b (b+1), {b, a, Floor[ Sqrt[1/4 + 4M/(a (a+1))] - 1/2]}], {a, 1, Floor[Sqrt[4M]]}]], IntegerQ[ Sqrt[#]]&]] (* Jean-François Alcover, Mar 09 2019, after Robert Israel *)
-
istriangular(n)=issquare(8*n+1) \\ now one can use ispolygonal(n, 3)
isok(n) = {if (issquare(n), fordiv(n, d, if (d > sqrtint(n), break); if (istriangular(d) && istriangular(n/d), return (1)););); return (0);} \\ Michel Marcus, Jul 24 2013
-
from itertools import count, islice, takewhile
from sympy import divisors
from sympy.ntheory.primetest import is_square
def A169835_gen(): # generator of terms
return filter(lambda k:any(map(lambda d: is_square((d<<3)+1) and is_square((k//d<<3)+1), takewhile(lambda d:d**2<=k,divisors(k)))),(m**2 for m in count(0)))
A169835_list = list(islice(A169835_gen(),20)) # Chai Wah Wu, Mar 13 2023
Corrected (missing terms inserted) by
R. J. Mathar, Jun 04 2010
A171640
a(n) = 10*a(n-1)-a(n-2)-4 with a(1)=1 and a(2)=3.
Original entry on oeis.org
1, 3, 25, 243, 2401, 23763, 235225, 2328483, 23049601, 228167523, 2258625625, 22358088723, 221322261601, 2190864527283, 21687323011225, 214682365584963, 2125136332838401, 21036680962799043, 208241673295152025, 2061380051988721203, 20405558846592060001
Offset: 1
a(2+1) = [5-sqrt(24)+5+sqrt(24)]^2/4 = 100/4 = 25.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55.
- Giovanni Lucca, Circle chains inside the arbelos and integer sequences, Int'l J. Geom. (2023) Vol. 12, No. 1, 71-82.
- Index entries for linear recurrences with constant coefficients, signature (11,-11,1).
-
RecurrenceTable[{a[n] == 10 a[n - 1] - a[n - 2] - 4, a[1] == 1, a[2] == 3}, a, {n, 1, 21}] (* Michael De Vlieger, Oct 02 2015 *)
LinearRecurrence[{11,-11,1},{1,3,25},30] (* Harvey P. Dale, May 05 2018 *)
-
Vec(-x*(3*x^2-8*x+1)/((x-1)*(x^2-10*x+1)) + O(x^30)) \\ Colin Barker, Oct 02 2015
A174906
a(n) is the index of the first triangular number T_i exceeding T_n such that the product of T_i*T_n is a perfect square.
Original entry on oeis.org
24, 48, 80, 120, 168, 224, 49, 360, 440, 528, 624, 728, 840, 960, 1088, 1224, 1368, 1520, 1680, 1848, 2024, 2208, 242, 2600, 2808, 3024, 3248, 3480, 3720, 3968, 4224, 4488, 4760, 5040, 5328, 5624, 5928, 6240, 6560, 6888, 7224, 7568, 7920, 8280, 8648
Offset: 2
- Clifford A. Pickover, The Loom of God, Tapestries of Mathematics and Mysticism, Sterling, NY, 2009, page 33.
-
tri[n_] := n (n + 1)/2; f[n_] := Block[{k = n + 1, t = tri@n}, While[ !IntegerQ@ Sqrt[ t*tri@k], k++ ]; k]; Table[ f@n, {n, 2, 46}]
Showing 1-9 of 9 results.
Comments