cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001652 a(n) = 6*a(n-1) - a(n-2) + 2 with a(0) = 0, a(1) = 3.

Original entry on oeis.org

0, 3, 20, 119, 696, 4059, 23660, 137903, 803760, 4684659, 27304196, 159140519, 927538920, 5406093003, 31509019100, 183648021599, 1070379110496, 6238626641379, 36361380737780, 211929657785303, 1235216565974040, 7199369738058939, 41961001862379596, 244566641436218639
Offset: 0

Views

Author

Keywords

Comments

Consider all Pythagorean triples (X, X+1, Z) ordered by increasing Z; sequence gives X values.
Numbers n such that triangular number t(n) (see A000217) = n(n+1)/2 is a product of two consecutive integers (cf. A097571).
Members of Diophantine pairs. Solution to a*(a+1) = 2*b*(b+1) in natural numbers including 0; a = a(n), b = b(n) = A053141(n); The solution of a special case of a binomial problem of H. Finner and K. Strassburger (strass(AT)godot.dfi.uni-duesseldorf.de).
The index of all triangular numbers T(a(n)) for which 4T(n)+1 is a perfect square.
The three sequences x (A001652), y (A046090) and z (A001653) may be obtained by setting u and v equal to the Pell numbers (A000129) in the formulas x = 2uv, y = u^2 - v^2, z = u^2 + v^2 [Joseph Wiener and Donald Skow]. - Antonio Alberto Olivares, Dec 22 2003
All Pythagorean triples {X(n), Y(n)=X(n)+1, Z(n)} with X M*W(n), where W(n)=transpose of vector [X(n) Y(n) Z(n)] and M a 3 X 3 matrix given by [2 1 2 / 1 2 2 / 2 2 3]. - Lekraj Beedassy, Aug 14 2006
Let b(n) = A053141 then a(n)*b(n+1) = b(n)*a(n+1) + b(n). - Kenneth J Ramsey, Sep 22 2007
In general, if b(n) = A053141(n), then a(n)*b(n+k) = a(n+k)*b(n)+b(k); e.g., 3*84 = 119*2+14; 3*2870 = 4059*2+492; 20*2870 = 5741*14+84. - Charlie Marion, Nov 19 2007
Limit_{n -> oo} a(n)/a(n-1) = 3+2*sqrt(2) = A156035. - Klaus Brockhaus, Feb 17 2009
If (p,q) is a solution of the Diophantine equation: X^2 + (X+1)^2 = Y^2 then (p+q) or (p+q+1) are perfect squares. If (p,q) is a solution of the Diophantine equation: X^2 + (X+1)^2 = Y^2 then (p+q) or (p+q)/8 are perfect squares. If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation: X^2 + (X+1)^2 = Y^2 with pMohamed Bouhamida, Aug 29 2009
If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation: X^2 + (X + 1)^2 = y^2 with pMohamed Bouhamida, Sep 02 2009
a(n+k) = A001541(k)*a(n) + A001542(k)*A001653(n+1) + A001108(k). - Charlie Marion, Dec 10 2010
The numbers 3*A001652 = (0, 9, 60, 357, 2088, 12177, 70980, ...) are all the nonnegative values of X such that X^2 + (X+3)^2 = Z^2 (Z is in A075841). - Bruno Berselli, Aug 26 2010
Let T(n) = n*(n+1)/2 (the n-th triangular number). For n > 0,
T(a(n) + 2*k*A001653(n+1)) = 2*T(A053141(n-1) + k*A002315(n)) + k^2 and
T(a(n) + (2*k+1)*A001653(n+1)) = (A001109(n+1) + k*A002315(n))^2 + k*(k+1).
Also (a(n) + k*A001653(n))^2 + (a(n) + k*A001653(n) + 1)^2 = (A001653(n+1) + k*A002315(n))^2 + k^2. - Charlie Marion, Dec 09 2010
For n>0, A143608(n) divides a(n). - Kenneth J Ramsey, Jun 28 2012
Set a(n)=p; a(n)+1=q; the generated triple x=p^2+pq; y=q^2+pq; k=p^2+q^2 satisfies x^2+y^2=k(x+y). - Carmine Suriano, Dec 17 2013
The arms of the triangle are found with (b(n),c(n)) for 2*b(n)*c(n) and c(n)^2 - b(n)^2. Let b(1) = 1 and c(1) = 2, then b(n) = c(n-1) and c(n) = 2*c(n-1) + b(n-1). Alternatively, b(n) = c(n-1) and c(n) equals the nearest integer to b(n)*(1+sqrt(2)). - J. M. Bergot, Oct 09 2014
Conjecture: For n>1 a(n) is the index of the first occurrence of n in sequence A123737. - Vaclav Kotesovec, Jun 02 2015
Numbers m such that Product_{k=1..m} (4*k^4+1) is a square (see A274307). - Chai Wah Wu, Jun 21 2016
Numbers m such that m^2+(m+1)^2 is a square. - César Aguilera, Aug 14 2017
For integers a and d, let P(a,d,1) = a, P(a,d,2) = a+d, and, for n>2, P(a,d,n) = 2*P(a,d,n-1) + P(a,d,n-2). Further, let p(n) = Sum_{i=1..2n} P(a,d,i). Then p(n)^2 + (p(n)+d)^2 + a^2 = P(a,d,2n+1)^2 + d^2. When a = 1 and d = 1, p(n) = a(n) and P(a,d,n) = A000129(n), the n-th Pell number. - Charlie Marion, Dec 08 2018
The terms of this sequence satisfy the Diophantine equation k^2 + (k+1)^2 = m^2, which is equivalent to (2k+1)^2 - 2*m^2 = -1. Now, with x=2k+1 and y=m, we get the Pell-Fermat equation x^2 - 2*y^2 = -1. The solutions (x,y) of this equation are respectively in A002315 and A001653. The relation k = (x-1)/2 explains Lekraj Beedassy's Nov 25 2003 formula. Thus, the corresponding numbers m = y, which express the length of the hypotenuse of these right triangles (k,k+1,m) are in A001653. - Bernard Schott, Mar 10 2019
Members of Diophantine pairs. Related to solutions of p^2 = 2q^2 + 2 in natural numbers; p = p(n) = 2*sqrt(4T(a(n))+1), q = q(n) = sqrt(8*T(a(n))+1). Note that this implies that 4*T(a(n))+1 is a perfect square (numbers of the form 8*T(n)+1 are perfect squares for all n); these T(a(n))'s are the only solutions to the given Diophantine equation. - Steven Blasberg, Mar 04 2021

Examples

			The first few triples are (0,1,1), (3,4,5), (20,21,29), (119,120,169), ...
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A046090(n) = -a(-1-n).
Cf. A001108, A143608, A089950 (partial sums), A156035.
Cf. numbers m such that k*A000217(m)+1 is a square: A006451 for k=1; m=0 for k=2; A233450 for k=3; this sequence for k=4; A129556 for k=5; A001921 for k=6. - Bruno Berselli, Dec 16 2013
Cf. A002315, A001653 (solutions of x^2 - 2*y^2 = -1).

Programs

  • GAP
    a:=[0,3];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]+2; od; a; # Muniru A Asiru, Dec 08 2018
    
  • Haskell
    a001652 n = a001652_list !! n
    a001652_list = 0 : 3 : map (+ 2)
    (zipWith (-) (map (* 6) (tail a001652_list)) a001652_list)
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ (-2+(r2+1)*(3+2*r2)^n-(r2-1)*(3-2*r2)^n)/4: n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Feb 17 2009
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(3-x)/((1-6*x+x^2)*(1-x)))); // G. C. Greubel, Jul 15 2018
    
  • Maple
    A001652 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[0,3]) ;
        else
            6*procname(n-1)-procname(n-2)+2 ;
        end if;
    end proc: # R. J. Mathar, Feb 05 2016
  • Mathematica
    LinearRecurrence[{7,-7,1}, {0,3,20}, 30] (* Harvey P. Dale, Aug 19 2011 *)
    With[{c=3+2*Sqrt[2]},NestList[Floor[c*#]+3&,3,30]] (* Harvey P. Dale, Oct 22 2012 *)
    CoefficientList[Series[x (3 - x)/((1 - 6 x + x^2) (1 - x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 21 2014 *)
    Table[(LucasL[2*n + 1, 2] - 2)/4, {n, 0, 30}] (* G. C. Greubel, Jul 15 2018 *)
  • PARI
    {a(n) = subst( poltchebi(n+1) - poltchebi(n) - 2, x, 3) / 4}; /* Michael Somos, Aug 11 2006 */
    
  • PARI
    concat(0, Vec(x*(3-x)/((1-6*x+x^2)*(1-x)) + O(x^50))) \\ Altug Alkan, Nov 08 2015
    
  • PARI
    {a=1+sqrt(2); b=1-sqrt(2); Q(n) = a^n + b^n};
    for(n=0, 30, print1(round((Q(2*n+1) - 2)/4), ", ")) \\ G. C. Greubel, Jul 15 2018
    
  • Sage
    (x*(3-x)/((1-6*x+x^2)*(1-x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Mar 08 2019

Formula

G.f.: x *(3 - x) / ((1 - 6*x + x^2) * (1 - x)). - Simon Plouffe in his 1992 dissertation
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3). a_{n} = -1/2 + ((1-2^{1/2})/4)*(3 - 2^{3/2})^n + ((1+2^{1/2})/4)*(3 + 2^{3/2})^n. - Antonio Alberto Olivares, Oct 13 2003
a(n) = a(n-2) + 4*sqrt(2*(a(n-1)^2)+2*a(n-1)+1). - Pierre CAMI, Mar 30 2005
a(n) = (sinh((2*n+1)*log(1+sqrt(2)))-1)/2 = (sqrt(1+8*A029549)-1)/2. - Bill Gosper, Feb 07 2010
Binomial(a(n)+1,2) = 2*binomial(A053141(n)+1,2) = A029549(n). See A053141. - Bill Gosper, Feb 07 2010
Let b(n) = A046090(n) and c(n) = A001653(n). Then for k>j, c(i)*(c(k) - c(j)) = a(k+i) + ... + a(i+j+1) + a(k-i-1) + ... + a(j-i) + k - j. For n<0, a(n) = -b(-n-1). Also a(n)*a(n+2*k+1) + b(n)*b(n+2*k+1) + c(n)*c(n+2*k+1) = (a(n+k+1) - a(n+k))^2; a(n)*a(n+2*k) + b(n)*b(n+2*k) + c(n)*c(n+2*k) = 2*c(n+k)^2. - Charlie Marion, Jul 01 2003
a(n)*a(n+1) + A046090(n)*A046090(n+1) = A001542(n+1)^2 = A084703(n+1). - Charlie Marion, Jul 01 2003
For n and j >= 1, Sum_{k=0..j} A001653(k)*a(n) - Sum_{k=0...j-1} A001653(k)*a(n-1) + A053141(j) = A001109(j+1)*a(n) - A001109(j)*a(n-1) + A053141(j) = a(n+j). - Charlie Marion, Jul 07 2003
Sum_{k=0...n} (2*k+1)*a(n-k) = A001109(n+1) - A000217(n+1). - Charlie Marion, Jul 18 2003
a(n) = A055997(n) - 1 + sqrt(2*A055997(n)*A001108(n)). - Charlie Marion, Jul 21 2003
a(n) = {A002315(n) - 1}/2. - Lekraj Beedassy, Nov 25 2003
a(2*n+k) + a(k) + 1 = A001541(n)*A002315(n+k). For k>0, a(2*n+k) - a(k-1) = A001541(n+k)*A002315(n); e.g., 803760-119 = 19601*41. - Charlie Marion, Mar 17 2003
a(n) = (A001653(n+1) - 3*A001653(n) - 2)/4. - Lekraj Beedassy, Jul 13 2004
a(n) = {2*A084159(n) - 1 + (-1)^(n+1)}/2. - Lekraj Beedassy, Jul 21 2004
a(n+1) = 3*a(n) + sqrt(8*a(n)^2 + 8*a(n) +4) + 1, a(1)=0. - Richard Choulet, Sep 18 2007
As noted (Sep 20 2006), a(n) = 5*(a(n-1) + a(n-2)) - a(n-3) + 4. In general, for n > 2*k, a(n) = A001653(k)*(a(n-k) + a(n-k-1) + 1) - a(n-2*k-1) - 1. Also a(n) = 7*(a(n-1) - a(n-2)) + a(n-3). In general, for n > 2*k, A002378(k)*(a(n-k)-a(n-k-1)) + a(n-2*k-1). - Charlie Marion, Dec 26 2007
In general, for n >= k >0, a(n) = (A001653(n+k) - A001541(k) * A001653(n) - 2*A001109(k-1))/(4*A001109(k-1)); e.g., 4059 = (33461-3*5741-2*1)/(4*1); 4059 = (195025-17*5741-2*6)/(4*6). - Charlie Marion, Jan 21 2008
From Charlie Marion, Jan 04 2010: (Start)
a(n) = ( (1 + sqrt(2))^(2*n+1) + (1-sqrt(2))^(2*n+1) - 2)/4 = (A001333(2n+1) - 1)/2.
a(2*n+k-1) = Pell(2*n-1)*Pell(2*n+2*k) + Pell(2*n-2)*Pell(2*n+2*k+1) + A001108(k+1);
a(2*n+k) = Pell(2*n)*Pell(2*n+2*k+1) + Pell(2*n-1)*Pell(2*n+2*k+2) - A055997(k+2). (End)
a(n) = A048739(2*n-1) for n > 0. - Richard R. Forberg, Aug 31 2013
a(n+1) = 3*a(n) + 2*A001653(n) + 1 [Mohamed Bouhamida's 2009 (p,q)(r,s) comment above rewritten]. - Hermann Stamm-Wilbrandt, Jul 27 2014
a(n)^2 + (a(n)+1)^2 = A001653(n+1)^2. - Pierre CAMI, Mar 30 2005; clarified by Hermann Stamm-Wilbrandt, Aug 31 2014
a(n+1) = 3*A001541(n) + 10*A001109(n) + A001108(n). - Hermann Stamm-Wilbrandt, Sep 09 2014
For n>0, a(n) = Sum_{k=1..2*n} A000129(k). - Charlie Marion, Nov 07 2015
a(n) = 3*A053142(n) - A053142(n-1). - R. J. Mathar, Feb 05 2016
E.g.f.: (1/4)*(-2*exp(x) - (sqrt(2) - 1)*exp((3-2*sqrt(2))*x) + (1 + sqrt(2))*exp((3+2*sqrt(2))*x)). - Ilya Gutkovskiy, Apr 11 2016
a(n) = A001108(n) + 2*sqrt(A000217(A001108(n))). - Dimitri Papadopoulos, Jul 06 2017
a(A000217(n-1)) = ((A001653(n)+1)/2) * ((A001653(n)-1)/2), n > 1. - Ezhilarasu Velayutham, Mar 10 2019
a(n) = ((a(n-1)+1)*(a(n-1)-3))/a(n-2) for n > 2. - Vladimir Pletser, Apr 08 2020
In general, for each k >= 0, a(n) = ((a(n-k)+a(k-1)+1)*(a(n-k)-a(k)))/a(n-2*k) for n > 2*k. - Charlie Marion, Dec 27 2020
A generalization of the identity a(n)^2 + A046090(n)^2 = A001653(n+1)^2 follows. Let P(k,n) be the n-th k-gonal number. Then P(k,a(n)) + P(k,A046090(n)) = P(k,A001653(n+1)) + (4-k)*A001109(n). - Charlie Marion, Dec 07 2021
a(n) = A046090(n)-1 = A002024(A029549(n)). - Pontus von Brömssen, Sep 11 2024

Extensions

Additional comments from Wolfdieter Lang, Feb 10 2000

A006451 Numbers k such that k*(k+1)/2 + 1 is a square.

Original entry on oeis.org

0, 2, 5, 15, 32, 90, 189, 527, 1104, 3074, 6437, 17919, 37520, 104442, 218685, 608735, 1274592, 3547970, 7428869, 20679087, 43298624, 120526554, 252362877, 702480239, 1470878640, 4094354882, 8572908965, 23863649055, 49966575152
Offset: 0

Views

Author

Keywords

References

  • A. J. Gottlieb, How four dogs meet in a field, etc., Technology Review, Problem J/A2, Jul/August 1973 pp. 73-74; solution Jan 1974 (see link).
  • Jeffrey Shallit, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. numbers m such that k*A000217(m)+1 is a square: this sequence for k=1; m=0 for k=2; A233450 for k=3; A001652 for k=4; A129556 for k=5; A001921 for k=6. - Bruno Berselli, Dec 16 2013

Programs

  • Haskell
    a006451 n = a006451_list !! n
    a006451_list = 0 : 2 : 5 : 15 : map (+ 2)
       (zipWith (-) (map (* 6) (drop 2 a006451_list)) a006451_list)
    -- Reinhard Zumkeller, Jan 10 2012
  • Maple
    N:= 100: # to get a(0) to a(N)
    A[0]:= 0: A[1]:= 2: A[2]:= 5: A[3]:= 15:
    for n from 4 to N do A[n]:= 6*A[n-2] - A[n-4] + 2 od:
    seq(A[n],n=0..N); # Robert Israel, Aug 26 2014
  • Mathematica
    LinearRecurrence[{1,6,-6,-1,1},{0,2,5,15,32},30] (* Harvey P. Dale, Jul 17 2013 *)
    Select[Range[10^6], IntegerQ@ Sqrt[# (# + 1)/2 + 1] &] (* Michael De Vlieger, Apr 25 2017 *)
  • PARI
    for(n=1,10000,t=n*(n+1)/2+1;if(issquare(t), print1(n,", "))) \\ Joerg Arndt, Oct 10 2009
    

Formula

G.f.: x*(-2-3*x+2*x^2+x^3)/(x-1)/(x^2+2*x-1)/(x^2-2*x-1). Conjectured (correctly) by Simon Plouffe in his 1992 dissertation.
a(n) = 6*a(n-2) - a(n-4) + 2 with a(0)=0, a(1)=2, a(2)=5, a(3)=15. - Zak Seidov, Apr 15 2008
a(n) = 3*a(n-2) + 4*sqrt((a(n-2)^2 + a(n-2))/2 + 1) + 1 with a(0) = 0, a(1) = 2. - Raphie Frank, Feb 02 2013
a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - a(n-4) + a(n-5); a(0)=0, a(1)=2, a(2)=5, a(3)=15, a(4)=32. - Harvey P. Dale, Jul 17 2013
a(n) = 7*a(n-2) - 7*a(n-4) + a(n-6), for n>5. - Hermann Stamm-Wilbrandt, Aug 26 2014
a(2*n+1) = A098790(2*n+1). - Hermann Stamm-Wilbrandt, Aug 26 2014
a(2*n) = A098586(2*n-1), for n>0. - Hermann Stamm-Wilbrandt, Aug 27 2014
a(n) = 8*sqrt(T(a(n-2)) + 1) + a(n-4) where T(a(n)) = A000217(a(n)), and a(-1) = -1, a(0)=0, a(1)=2, a(2)=5. - Vladimir Pletser, Apr 29 2017

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 07 2001
Edited by N. J. A. Sloane, Oct 24 2009, following discussions by several correspondents in the Sequence Fans Mailing List, Oct 10 2009

A001921 a(n) = 14*a(n-1) - a(n-2) + 6 for n>1, a(0)=0, a(1)=7.

Original entry on oeis.org

0, 7, 104, 1455, 20272, 282359, 3932760, 54776287, 762935264, 10626317415, 148005508552, 2061450802319, 28712305723920, 399910829332567, 5570039304932024, 77580639439715775, 1080558912851088832, 15050244140475527879, 209622859053806301480
Offset: 0

Views

Author

Keywords

Comments

(a(n)+1)^3 - a(n)^3 is a square (that of A001570(n)).
The ratio A001570(n)/a(n) tends to sqrt(3) = 1.73205... as n increases. - Pierre CAMI, Apr 21 2005
Define a(1)=0 a(2)=7 such that 3*(a(1)^2) + 3*a(1) + 1 = j(1)^2 = 1^2 and 3*(a(2)^2) + 3*a(2) + 1 = j(2)^2 = 13^2. Then a(n) = a(n-2) + 8*sqrt(3*(a(n-1)^2) + 3*a(n-1) + 1). Another definition : a(n) such that 3*(a(n)^2) + 3*a(n) + 1 = j(n)^2. - Pierre CAMI, Mar 30 2005
a(n) = A001353(n)*A001075(n+1). For n>0, the triple {a(n), a(n)+1=A001922(n), A001570(n)} forms a near-isosceles triangle with angle 2*Pi/3 bounded by the consecutive sides. - Lekraj Beedassy, Jul 21 2006
Numbers n such that A003215(n) is a square, cf. A006051. - Joerg Arndt, Jan 02 2017

Examples

			G.f. = 7*x + 104*x^2 + 1455*x^3 + 20272*x^4 + 282359*x^5 + 3932760*x^6 + ... - _Michael Somos_, Aug 17 2018
		

References

  • J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 104.
  • E.-A. Majol, Note #2228, L'Intermédiaire des Mathématiciens, 9 (1902), pp. 183-185. - N. J. A. Sloane, Mar 03 2022
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. numbers m such that k*A000217(m)+1 is a square: A006451 for k=1; A233450 for k=3; A001652 for k=4; A129556 for k=5; this sequence for k=6. - Bruno Berselli, Dec 16 2013

Programs

  • Magma
    [Round(-1/2 - (1/6)*Sqrt(3)*(7-4*Sqrt(3))^n + (1/6)*Sqrt(3)*(7+4*Sqrt(3))^n + (1/4)*(7+4*Sqrt(3))^n + (1/4)*(7-4*Sqrt(3))^n): n in [0..50]]; // G. C. Greubel, Nov 04 2017
  • Maple
    A001921:=z*(-7+z)/(z-1)/(z**2-14*z+1); # Conjectured by Simon Plouffe in his 1992 dissertation.
  • Mathematica
    t = {0, 7}; Do[AppendTo[t, 14*t[[-1]] - t[[-2]] + 6], {20}]; t (* T. D. Noe, Aug 17 2012 *)
    LinearRecurrence[{15, -15, 1}, {0, 7, 104}, 19] (* Michael De Vlieger, Jan 02 2017 *)
    a[ n_] := -1/2 + (ChebyshevT[n + 1, 7] - ChebyshevT[n, 7]) / 12; (* Michael Somos, Aug 17 2018 *)
  • PARI
    concat(0, Vec(x*(x-7)/((x-1)*(x^2-14*x+1)) + O(x^100))) \\ Colin Barker, Jan 06 2015
    
  • PARI
    {a(n) = -1/2 + (polchebyshev(n + 1, 1, 7) - polchebyshev(n, 1, 7)) / 12}; /* Michael Somos, Aug 17 2018 */
    

Formula

G.f.: x*(-7 + x)/(x - 1)/(x^2 - 14*x + 1) (see Simon Plouffe in Maple section).
a(n) = (A028230(n+1)-1)/2. - R. J. Mathar, Mar 19 2009
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3). - Colin Barker, Jan 06 2015
a(n) = -1 - a(-1-n) for all n in Z. - Michael Somos, Aug 17 2018

Extensions

More terms from James Sellers, Jul 04 2000

A129556 Numbers k such that the k-th centered pentagonal number A005891(k) = (5k^2 + 5k + 2)/2 is a square.

Original entry on oeis.org

0, 2, 21, 95, 816, 3626, 31005, 137711, 1177392, 5229410, 44709909, 198579887, 1697799168, 7540806314, 64471658493, 286352060063, 2448225223584, 10873837476098, 92968086837717, 412919472031679, 3530339074609680, 15680066099727722, 134059916748330141
Offset: 1

Views

Author

Alexander Adamchuk, Apr 20 2007

Keywords

Comments

Corresponding numbers m > 0 such that m^2 is a centered pentagonal number are listed in A129557 = {1, 4, 34, 151, 1291, 5734, 49024, ...}.
From Andrea Pinos, Nov 02 2022: (Start)
By definition: 5*T(a(n)) = A129557(n)^2 - 1 where triangular number T(j) = j*(j+1)/2. This implies:
Every odd prime factor of a(n) and d(n)=a(n)+1 is present in b(n)=A129557(n)+1 or in c(n)=A129557(n)-1. (End)
From the law of cosines the non-Pythagorean triple {a(n), a(n)+1=A254332(n), A129557(n+1)} forms a near-isosceles triangle whose angle between the consecutive integer sides is equal to the central angle of the regular pentachoron polytope (4-simplex) (see A140244 and A140245). This implies that the terms {a(n)} are also those numbers k such that 1 + 5*A000217(k) is a square. - Federico Provvedi, Apr 04 2023

Crossrefs

Cf. A005891 (centered pentagonal numbers), A129557 (numbers k>0 such that k^2 is a centered pentagonal number), A221874.
Cf. numbers m such that k*A000217(m)+1 is a square: A006451 for k=1; m=0 for k=2; A233450 for k=3; A001652 for k=4; this sequence for k=5; A001921 for k=6. - Bruno Berselli, Dec 16 2013

Programs

  • Maple
    A005891 := proc(n) (5*n^2+5*n+2)/2 ; end: n := 0 : while true do if issqr(A005891(n)) then print(n) ; fi ; n := n+1 ; od : # R. J. Mathar, Jun 06 2007
  • Mathematica
    Do[ f=(5n^2+5n+2)/2; If[ IntegerQ[ Sqrt[f] ], Print[n] ], {n,1,40000} ]
    LinearRecurrence[{1,38,-38,-1,1},{0,2,21,95,816},30] (* Harvey P. Dale, Nov 09 2017 *)
    Table[(((x^(n+2))+(((-1)^n*(x^(2*n+1)+1)-x)/(x^n)))/(x^2+1)-1)/2/.x->3+Sqrt[10],{n,0,50}]//Round (* Federico Provvedi, Apr 04 2023 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,-1,-38,38,1]^(n-1)*[0;2;21;95;816])[1,1] \\ Charles R Greathouse IV, Feb 11 2019

Formula

For n >= 5, a(n) = 38*a(n-2) - a(n-4) + 18. - Max Alekseyev, May 08 2009
G.f.: x^2*(x^3+2*x^2-19*x-2) / ((x-1)*(x^2-6*x-1)*(x^2+6*x-1)). - Colin Barker, Feb 21 2013
a(n) = (A221874(n) - 1) / 2. - Bruno Berselli, Feb 21 2013
From Andrea Pinos, Oct 24 2022: (Start)
The ratios of successive terms converge to two different limits:
lower: D = lim_{n->oo} a(2n)/a(2n-1) = (7+2*sqrt(10))/3;
upper: E = lim_{n->oo} a(2n+1)/a(2n) = (13+4*sqrt(10))/3.
So lim_{n->oo} a(n+2)/a(n) = D*E = 19 + 6*sqrt(10). (End)
a(n) = (x^(2*(n+1)) + (-1)^n*(x^(2*n+1)+1) - x) / (2*x^n*(x^2 + 1)) - (1/2), with x=3+sqrt(10). - Federico Provvedi, Apr 04 2023

Extensions

More terms from R. J. Mathar, Jun 06 2007
Further terms from Max Alekseyev, May 08 2009
a(22)-a(23) from Colin Barker, Feb 21 2013
Showing 1-4 of 4 results.