cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A322790 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Sum_{j=0..k} binomial(2*k,2*j)*(n+1)^(k-j)*n^j.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 17, 5, 1, 1, 99, 49, 7, 1, 1, 577, 485, 97, 9, 1, 1, 3363, 4801, 1351, 161, 11, 1, 1, 19601, 47525, 18817, 2889, 241, 13, 1, 1, 114243, 470449, 262087, 51841, 5291, 337, 15, 1, 1, 665857, 4656965, 3650401, 930249, 116161, 8749, 449, 17, 1
Offset: 0

Views

Author

Seiichi Manyama, Dec 26 2018

Keywords

Examples

			Square array begins:
   1,  1,   1,    1,      1,       1,         1, ...
   1,  3,  17,   99,    577,    3363,     19601, ...
   1,  5,  49,  485,   4801,   47525,    470449, ...
   1,  7,  97, 1351,  18817,  262087,   3650401, ...
   1,  9, 161, 2889,  51841,  930249,  16692641, ...
   1, 11, 241, 5291, 116161, 2550251,  55989361, ...
   1, 13, 337, 8749, 227137, 5896813, 153090001, ...
		

Crossrefs

Columns 0-3 give A000012, A005408, A069129(n+1), A322830.
Main diagonal gives A173174.
A(n-1,n) gives A173148(n).

Programs

  • Mathematica
    A[0, k_] := 1; A[n_, k_] := Sum[Binomial[2 k, 2 j]*(n + 1)^(k - j)*n^j, {j, 0, k}]; Table[A[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 26 2018 *)

Formula

a(n) = 2 * A322699(n) + 1.
A(n,k) + sqrt(A(n,k)^2 - 1) = (sqrt(n+1) + sqrt(n))^(2*k).
A(n,k) - sqrt(A(n,k)^2 - 1) = (sqrt(n+1) - sqrt(n))^(2*k).
A(n,0) = 1, A(n,1) = 2*n+1 and A(n,k) = (4*n+2) * A(n,k-1) - A(n,k-2) for k > 1.
A(n,k) = T_{k}(2*n+1) where T_{k}(x) is a Chebyshev polynomial of the first kind.
T_1(x) = x. So A(n,1) = 2*n+1.

A175497 Numbers k with the property that k^2 is a product of two distinct triangular numbers.

Original entry on oeis.org

0, 6, 30, 35, 84, 180, 204, 210, 297, 330, 546, 840, 1170, 1189, 1224, 1710, 2310, 2940, 2970, 3036, 3230, 3900, 4914, 6090, 6930, 7134, 7140, 7245, 7440, 8976, 10710, 12654, 14175, 14820, 16296, 16380, 17220, 19866, 22770, 25172, 25944, 29103
Offset: 1

Views

Author

Zak Seidov, May 30 2010

Keywords

Comments

From Robert G. Wilson v, Jul 24 2010: (Start)
Terms in the i-th row are products contributed with a factor A000217(i):
(1) 0, 6, 35, 204, 1189, 6930, 40391, 235416, 1372105, 7997214, 46611179, ...
(2) 30, 297, 2940, 29103, 288090, 2851797, 28229880, ...
(3) 84, 1170, 16296, 226974, 3161340, ...
(4) 180, 3230, 57960, 1040050, 18662940, ...
(5) 330, 7245, 159060, 3492075, 76666590, ...
(6) 546, 14175, 368004, 9553929, ...
(7) 840, 25172, 754320, 22604428, ...
(8) 210, 1224, 7134, 41580, 242346, 1412496, 8232630, 47983284, ...
(9) 1710, 64935, 2465820, 93636225, ...
(10) 2310, 96965, 4070220, ...
(11) 3036, 139590, 6418104, ...
(12) 3900, 194922, 9742200, ...
(13) 4914, 265265, 14319396, ...
(14) 6090, 353115, 20474580, ...
(15) 7440, 461160, 28584480, ...
(End)
Numbers m with property that m^2 is a product of two distinct triangular numbers T(i) and T(j) such that i and j are in the same row of the square array A(n, k) defined in A322699. - Onur Ozkan, Mar 17 2023

Crossrefs

From Robert G. Wilson v, Jul 24 2010: (Start)
A001109 (with the exception of 1), A011945, A075848 and A055112 are all proper subsets.
Many terms are in common with A147779.
Cf. A152005 (two distinct tetrahedral numbers).

Programs

  • Maple
    isA175497 := proc(n)
        local i,Ti,Tj;
        if n = 0 then
            return true;
        end if;
        for i from 1 do
            Ti := i*(i+1)/2 ;
            if Ti > n^2 then
                return false;
            else
                Tj := n^2/Ti ;
                if Tj <> Ti and type(Tj,'integer') then
                    if isA000217(Tj) then  # code in A000217
                        return true;
                    end if;
                end if;
            end if;
        end do:
    end proc:
    for n from 0 do
        if isA175497(n) then
            printf("%d,\n",n);
        end if;
    end do: # R. J. Mathar, May 26 2016
  • Mathematica
    triangularQ[n_] := IntegerQ[Sqrt[8n + 1]];
    okQ[n_] := Module[{i, Ti, Tj}, If[n == 0, Return[True]]; For[i = 1, True, i++, Ti = i(i+1)/2; If[Ti > n^2, Return[False], Tj = n^2/Ti; If[Tj != Ti && IntegerQ[Tj], If[ triangularQ[Tj], Return[True]]]]]];
    Reap[For[k = 0, k < 30000, k++, If[okQ[k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Jun 13 2023, after R. J. Mathar *)
  • Python
    from itertools import count, islice, takewhile
    from sympy import divisors
    from sympy.ntheory.primetest import is_square
    def A175497_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda k:not k or any(map(lambda d: is_square((d<<3)+1) and is_square((k**2//d<<3)+1), takewhile(lambda d:d**2A175497_list = list(islice(A175497_gen(),20)) # Chai Wah Wu, Mar 13 2023
    
  • Python
    def A175497_list(n):
        def A322699_A(k, n):
            p, q, r, m = 0, k, 4*k*(k+1), 0
            while m < n:
                p, q, r = q, r, (4*k+3)*(r-q) + p
                m += 1
            return p
        def a(k, n, j):
            if n == 0: return 0
            p = A322699_A(k, n)*(A322699_A(k, n)+1)*(2*k+1) - a(k, n-1, 1)
            q = (4*k+2)*p - A322699_A(k, n)*(A322699_A(k, n)+1)//2
            m = 1
            while m < j: p, q = q, (4*k+2)*q - p; m += 1
            return p
        A = set([a(k, 1, 1) for k in range(n+1)])
        k, l, m = 1, 1, 2
        while True:
            x = a(k, l, m)
            if x < max(A):
                A |= {x}
                A  = set(sorted(A)[:n+1])
                m += 1
            else:
                if m == 1 and l == 1:
                    if k > n:
                        return sorted(A)
                    k += 1
                elif m > 1:
                    l += 1; m = 1
                elif l > 1:
                    k += 1; l, m = 1, 1
    # Onur Ozkan, Mar 15 2023

Formula

a(n)^2 = A169836(n). - R. J. Mathar, Mar 12 2023

A322746 a(n) = 1/2 * (-1 + Sum_{k=0..n} binomial(2*n,2*k)*(n+1)^(n-k)*n^k).

Original entry on oeis.org

0, 1, 24, 675, 25920, 1275125, 76545000, 5425069447, 443365544448, 41047124680809, 4245890890571000, 485307363135371051, 60742714406414040000, 8262695239025750162653, 1213734518568509516047560, 191478489107270936785743375, 32288451913272713227175006208
Offset: 0

Views

Author

Seiichi Manyama, Dec 25 2018

Keywords

Examples

			(sqrt(3) + sqrt(2))^2 = 5 + 2*sqrt(6) = sqrt(25) + sqrt(24). So a(2) = 24.
		

Crossrefs

Main diagonal of A322699.
Cf. A322747.

Programs

  • PARI
    {a(n) = 1/2*(-1+sum(k=0, n, binomial(2*n,2*k)*(n+1)^(n-k)*n^k))}
    
  • PARI
    {a(n) = (polchebyshev(n, 1, 2*n+1)-1)/2}

Formula

sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^n.
sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(n+1) - sqrt(n))^n.
a(n) = (A173174(n) - 1)/2.
a(n) ~ exp(1/2) * 2^(2*n - 2) * n^n. - Vaclav Kotesovec, Dec 25 2018

A173175 a(n) = sinh^2( 2n*arcsinh(sqrt n)).

Original entry on oeis.org

0, 8, 2400, 1825200, 2687489280, 6503780163000, 23436548406180000, 117725514040791821024, 786292024016459316676608, 6739465778247681589030301160, 72110357818535214970387726284000, 942092946853627620313318842336862608, 14758709413836719039368938494112056160000
Offset: 0

Views

Author

Artur Jasinski, Feb 11 2010

Keywords

Crossrefs

Programs

  • Maple
    A173175 := proc(n) sinh(2*n*arcsinh(sqrt(n))) ; %^2 ; expand(%); simplify(%) ; end proc: # R. J. Mathar, Feb 26 2011
  • Mathematica
    Table[Round[N[Sinh[(2 n) ArcSinh[Sqrt[n]]]^2, 100]], {n, 0, 20}]
  • PARI
    {a(n) = (polchebyshev(2*n, 1, 2*n+1)-1)/2} \\ Seiichi Manyama, Jan 02 2019
    
  • PARI
    {a(n) = 1/2*(-1+sum(k=0, 2*n, binomial(4*n, 2*k)*(n+1)^(2*n-k)*n^k))} \\ Seiichi Manyama, Jan 02 2019

Formula

From Seiichi Manyama, Jan 02 2019: (Start)
a(n) = A322699(n,2*n).
a(n) = (T_{2*n}(2*n+1) - 1)/2 where T_{n}(x) is a Chebyshev polynomial of the first kind.
a(n) = 1/2 * (-1 + Sum_{k=0..2*n} binomial(4*n,2*k)*(n+1)^(2*n-k)*n^k). (End)
a(n) ~ exp(1) * 2^(4*n - 2) * n^(2*n). - Vaclav Kotesovec, Jan 02 2019

Extensions

a(11)-a(12) from Seiichi Manyama, Jan 02 2019

A322675 a(n) = n * (4*n + 3)^2.

Original entry on oeis.org

0, 49, 242, 675, 1444, 2645, 4374, 6727, 9800, 13689, 18490, 24299, 31212, 39325, 48734, 59535, 71824, 85697, 101250, 118579, 137780, 158949, 182182, 207575, 235224, 265225, 297674, 332667, 370300, 410669, 453870, 499999, 549152, 601425, 656914, 715715, 777924, 843637
Offset: 0

Views

Author

Seiichi Manyama, Dec 23 2018

Keywords

Examples

			(sqrt(2) - sqrt(1))^3 = 5*sqrt(2) - 7 = sqrt(50) - sqrt(49). So a(1) = 49.
		

Crossrefs

Column 3 of A322699.
sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^k: A033996(n) (k=2), this sequence (k=3), A322677 (k=4), A322745 (k=5).

Programs

  • PARI
    {a(n) = n*(4*n+3)^2}
    
  • PARI
    concat(0, Vec(x*(49 + 46*x + x^2) / (1 - x)^4 + O(x^40))) \\ Colin Barker, Dec 23 2018

Formula

sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^3.
sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(n+1) - sqrt(n))^3.
Sum_{n>=1} 1/a(n) = 8/27 + 2*c/3 + Pi/18 - Pi^2/12 - log(2)/3 = 0.027956857336446942649782759291008857522041405948099294509008..., where c is the Catalan constant A006752. - Vaclav Kotesovec, Dec 23 2018
From Colin Barker, Dec 23 2018: (Start)
G.f.: x*(49 + 46*x + x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.
(End)

A322745 a(n) = n * (16*n^2+20*n+5)^2.

Original entry on oeis.org

0, 1681, 23762, 131043, 465124, 1275125, 2948406, 6041287, 11309768, 19740249, 32580250, 51369131, 77968812, 114594493, 163845374, 228735375, 312723856, 419746337, 554245218, 721200499, 926160500, 1175272581, 1475313862, 1833721943, 2258625624, 2758875625, 3344075306
Offset: 0

Views

Author

Seiichi Manyama, Dec 25 2018

Keywords

Examples

			(sqrt(2) + sqrt(1))^5 = 29*sqrt(2) + 41 = sqrt(1682) + sqrt(1681). So a(1) = 1681.
		

Crossrefs

Column 5 of A322699.

Programs

  • PARI
    {a(n) = n*(16*n^2+20*n+5)^2}
    
  • PARI
    concat(0, Vec(x*(1681 + 13676*x + 13686*x^2 + 1676*x^3 + x^4) / (1 - x)^6 + O(x^30))) \\ Colin Barker, Dec 25 2018

Formula

sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^5.
sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(n+1) - sqrt(n))^5.
From Colin Barker, Dec 25 2018: (Start)
G.f.: x*(1681 + 13676*x + 13686*x^2 + 1676*x^3 + x^4) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)

A322707 a(0)=0, a(1)=5 and a(n) = 22*a(n-1) - a(n-2) + 10 for n > 1.

Original entry on oeis.org

0, 5, 120, 2645, 58080, 1275125, 27994680, 614607845, 13493377920, 296239706405, 6503780163000, 142786923879605, 3134808545188320, 68823001070263445, 1510971215000607480, 33172543728943101125, 728284990821747617280, 15989097254349504479045
Offset: 0

Views

Author

Seiichi Manyama, Dec 24 2018

Keywords

Comments

Solutions to X*(X+1)=30*Y^2 with Y=A077421. - R. J. Mathar, Mar 14 2023

Examples

			(sqrt(6) + sqrt(5))^2 = 11 + 2*sqrt(30) = sqrt(121) + sqrt(120). So a(2) = 120.
		

Crossrefs

Row 5 of A322699.
Cf. A188930 (sqrt(5)+sqrt(6)).

Programs

  • PARI
    concat(0, Vec(5*x*(1 + x) / ((1 - x)*(1 - 22*x + x^2)) + O(x^20))) \\ Colin Barker, Dec 24 2018

Formula

sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(6) + sqrt(5))^n.
sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(6) - sqrt(5))^n.
a(n) = 23*a(n-1) - 23*a(n-2) + a(n-3) for n > 2.
From Colin Barker, Dec 24 2018: (Start)
G.f.: 5*x*(1 + x) / ((1 - x)*(1 - 22*x + x^2)).
a(n) = ((11+2*sqrt(30))^(-n) * (-1+(11+2*sqrt(30))^n)^2) / 4.
(End)
2*a(n) = A077422(n)-1. - R. J. Mathar, Mar 16 2023

A322708 a(0)=0, a(1)=6 and a(n) = 26*a(n-1) - a(n-2) + 12 for n > 1.

Original entry on oeis.org

0, 6, 168, 4374, 113568, 2948406, 76545000, 1987221606, 51591216768, 1339384414374, 34772403556968, 902743108066806, 23436548406180000, 608447515452613206, 15796198853361763368, 410092722671953234374, 10646614590617422330368, 276401886633381027355206
Offset: 0

Views

Author

Seiichi Manyama, Dec 24 2018

Keywords

Comments

Solutions to X*(X+1)=42*Y^2 with Y=A097309. - R. J. Mathar, Mar 14 2023

Examples

			(sqrt(7) + sqrt(6))^2 = 13 + 2*sqrt(42) = sqrt(169) + sqrt(168). So a(2) = 168.
		

Crossrefs

Row 6 of A322699.

Programs

  • Mathematica
    LinearRecurrence[{27,-27,1},{0,6,168},20] (* Harvey P. Dale, Apr 30 2022 *)
  • PARI
    concat(0, Vec(6*x*(1 + x) / ((1 - x)*(1 - 26*x + x^2)) + O(x^20))) \\ Colin Barker, Dec 24 2018

Formula

sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(7) + sqrt(6))^n.
sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(7) - sqrt(6))^n.
a(n) = 27*a(n-1) - 27*a(n-2) + a(n-3) for n > 2.
From Colin Barker, Dec 24 2018: (Start)
G.f.: 6*x*(1 + x) / ((1 - x)*(1 - 26*x + x^2)).
a(n) = ((13+2*sqrt(42))^(-n) * (-1+(13+2*sqrt(42))^n)^2) / 4.
(End)
2*a(n) = A097308(n)-1. - R. J. Mathar, Mar 14 2023

A322709 a(0)=0, a(1)=7 and a(n) = 30*a(n-1) - a(n-2) + 14 for n > 1.

Original entry on oeis.org

0, 7, 224, 6727, 201600, 6041287, 181037024, 5425069447, 162571046400, 4871706322567, 145988618630624, 4374786852596167, 131097616959254400, 3928553721925035847, 117725514040791821024, 3527836867501829594887, 105717380511014096025600, 3167993578462921051173127
Offset: 0

Views

Author

Seiichi Manyama, Dec 24 2018

Keywords

Comments

Also numbers k such that 7*A000217(k) is a square. - Metin Sariyar, Nov 16 2019

Examples

			(sqrt(8) + sqrt(7))^2 = 15 + 2*sqrt(56) = sqrt(225) + sqrt(224). So a(2) = 224.
		

Crossrefs

Row 7 of A322699.
Cf. A188932 (sqrt(7)+sqrt(8)).

Programs

  • Magma
    a:=[0,7]; [n le 2 select a[n] else 30*Self(n-1)-Self(n-2)+14: n in [1..18]]; // Marius A. Burtea, Nov 16 2019
    
  • Magma
    R:=PowerSeriesRing(Integers(), 18); [0] cat Coefficients(R!(7*x*(1 + x) / ((1 - x)*(1-30*x + x^2))));  // Marius A. Burtea, Nov 16 2019
  • Mathematica
    LinearRecurrence[{31,-31,1}, {0, 7, 224}, 18] (* Metin Sariyar, Nov 23 2019 *)
  • PARI
    concat(0, Vec(7*x*(1 + x) / ((1 - x)*(1 - 30*x + x^2)) + O(x^20))) \\ Colin Barker, Dec 25 2018
    

Formula

sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(8) + sqrt(7))^n.
sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(8) - sqrt(7))^n.
a(n) = 31*a(n-1) - 31*a(n-2) + a(n-3) for n > 2.
From Colin Barker, Dec 25 2018: (Start)
G.f.: 7*x*(1 + x) / ((1 - x)*(1 - 30*x + x^2)).
a(n) = ((15+4*sqrt(14))^(-n) * (-1+(15+4*sqrt(14))^n)^2) / 4.
(End)
E.g.f.: (1/4)*(-2*exp(x) + exp((15-4*sqrt(14))*x) + exp((15+4*sqrt(14))*x)). - Stefano Spezia, Nov 16 2019
2*a(n) = A068203(n)-1. - R. J. Mathar, Mar 16 2023
Showing 1-9 of 9 results.