A322790
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Sum_{j=0..k} binomial(2*k,2*j)*(n+1)^(k-j)*n^j.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 17, 5, 1, 1, 99, 49, 7, 1, 1, 577, 485, 97, 9, 1, 1, 3363, 4801, 1351, 161, 11, 1, 1, 19601, 47525, 18817, 2889, 241, 13, 1, 1, 114243, 470449, 262087, 51841, 5291, 337, 15, 1, 1, 665857, 4656965, 3650401, 930249, 116161, 8749, 449, 17, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 3, 17, 99, 577, 3363, 19601, ...
1, 5, 49, 485, 4801, 47525, 470449, ...
1, 7, 97, 1351, 18817, 262087, 3650401, ...
1, 9, 161, 2889, 51841, 930249, 16692641, ...
1, 11, 241, 5291, 116161, 2550251, 55989361, ...
1, 13, 337, 8749, 227137, 5896813, 153090001, ...
-
A[0, k_] := 1; A[n_, k_] := Sum[Binomial[2 k, 2 j]*(n + 1)^(k - j)*n^j, {j, 0, k}]; Table[A[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 26 2018 *)
A175497
Numbers k with the property that k^2 is a product of two distinct triangular numbers.
Original entry on oeis.org
0, 6, 30, 35, 84, 180, 204, 210, 297, 330, 546, 840, 1170, 1189, 1224, 1710, 2310, 2940, 2970, 3036, 3230, 3900, 4914, 6090, 6930, 7134, 7140, 7245, 7440, 8976, 10710, 12654, 14175, 14820, 16296, 16380, 17220, 19866, 22770, 25172, 25944, 29103
Offset: 1
Many terms are in common with
A147779.
Cf.
A152005 (two distinct tetrahedral numbers).
-
isA175497 := proc(n)
local i,Ti,Tj;
if n = 0 then
return true;
end if;
for i from 1 do
Ti := i*(i+1)/2 ;
if Ti > n^2 then
return false;
else
Tj := n^2/Ti ;
if Tj <> Ti and type(Tj,'integer') then
if isA000217(Tj) then # code in A000217
return true;
end if;
end if;
end if;
end do:
end proc:
for n from 0 do
if isA175497(n) then
printf("%d,\n",n);
end if;
end do: # R. J. Mathar, May 26 2016
-
triangularQ[n_] := IntegerQ[Sqrt[8n + 1]];
okQ[n_] := Module[{i, Ti, Tj}, If[n == 0, Return[True]]; For[i = 1, True, i++, Ti = i(i+1)/2; If[Ti > n^2, Return[False], Tj = n^2/Ti; If[Tj != Ti && IntegerQ[Tj], If[ triangularQ[Tj], Return[True]]]]]];
Reap[For[k = 0, k < 30000, k++, If[okQ[k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Jun 13 2023, after R. J. Mathar *)
-
from itertools import count, islice, takewhile
from sympy import divisors
from sympy.ntheory.primetest import is_square
def A175497_gen(startvalue=0): # generator of terms >= startvalue
return filter(lambda k:not k or any(map(lambda d: is_square((d<<3)+1) and is_square((k**2//d<<3)+1), takewhile(lambda d:d**2A175497_list = list(islice(A175497_gen(),20)) # Chai Wah Wu, Mar 13 2023
-
def A175497_list(n):
def A322699_A(k, n):
p, q, r, m = 0, k, 4*k*(k+1), 0
while m < n:
p, q, r = q, r, (4*k+3)*(r-q) + p
m += 1
return p
def a(k, n, j):
if n == 0: return 0
p = A322699_A(k, n)*(A322699_A(k, n)+1)*(2*k+1) - a(k, n-1, 1)
q = (4*k+2)*p - A322699_A(k, n)*(A322699_A(k, n)+1)//2
m = 1
while m < j: p, q = q, (4*k+2)*q - p; m += 1
return p
A = set([a(k, 1, 1) for k in range(n+1)])
k, l, m = 1, 1, 2
while True:
x = a(k, l, m)
if x < max(A):
A |= {x}
A = set(sorted(A)[:n+1])
m += 1
else:
if m == 1 and l == 1:
if k > n:
return sorted(A)
k += 1
elif m > 1:
l += 1; m = 1
elif l > 1:
k += 1; l, m = 1, 1
# Onur Ozkan, Mar 15 2023
A322746
a(n) = 1/2 * (-1 + Sum_{k=0..n} binomial(2*n,2*k)*(n+1)^(n-k)*n^k).
Original entry on oeis.org
0, 1, 24, 675, 25920, 1275125, 76545000, 5425069447, 443365544448, 41047124680809, 4245890890571000, 485307363135371051, 60742714406414040000, 8262695239025750162653, 1213734518568509516047560, 191478489107270936785743375, 32288451913272713227175006208
Offset: 0
(sqrt(3) + sqrt(2))^2 = 5 + 2*sqrt(6) = sqrt(25) + sqrt(24). So a(2) = 24.
-
{a(n) = 1/2*(-1+sum(k=0, n, binomial(2*n,2*k)*(n+1)^(n-k)*n^k))}
-
{a(n) = (polchebyshev(n, 1, 2*n+1)-1)/2}
A173175
a(n) = sinh^2( 2n*arcsinh(sqrt n)).
Original entry on oeis.org
0, 8, 2400, 1825200, 2687489280, 6503780163000, 23436548406180000, 117725514040791821024, 786292024016459316676608, 6739465778247681589030301160, 72110357818535214970387726284000, 942092946853627620313318842336862608, 14758709413836719039368938494112056160000
Offset: 0
Cf.
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121,
A173127,
A173128,
A173129,
A173130,
A173131,
A173133,
A173134,
A173148,
A173151,
A173170,
A173171,
A322699.
-
A173175 := proc(n) sinh(2*n*arcsinh(sqrt(n))) ; %^2 ; expand(%); simplify(%) ; end proc: # R. J. Mathar, Feb 26 2011
-
Table[Round[N[Sinh[(2 n) ArcSinh[Sqrt[n]]]^2, 100]], {n, 0, 20}]
-
{a(n) = (polchebyshev(2*n, 1, 2*n+1)-1)/2} \\ Seiichi Manyama, Jan 02 2019
-
{a(n) = 1/2*(-1+sum(k=0, 2*n, binomial(4*n, 2*k)*(n+1)^(2*n-k)*n^k))} \\ Seiichi Manyama, Jan 02 2019
A322675
a(n) = n * (4*n + 3)^2.
Original entry on oeis.org
0, 49, 242, 675, 1444, 2645, 4374, 6727, 9800, 13689, 18490, 24299, 31212, 39325, 48734, 59535, 71824, 85697, 101250, 118579, 137780, 158949, 182182, 207575, 235224, 265225, 297674, 332667, 370300, 410669, 453870, 499999, 549152, 601425, 656914, 715715, 777924, 843637
Offset: 0
(sqrt(2) - sqrt(1))^3 = 5*sqrt(2) - 7 = sqrt(50) - sqrt(49). So a(1) = 49.
sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^k:
A033996(n) (k=2), this sequence (k=3),
A322677 (k=4),
A322745 (k=5).
A322745
a(n) = n * (16*n^2+20*n+5)^2.
Original entry on oeis.org
0, 1681, 23762, 131043, 465124, 1275125, 2948406, 6041287, 11309768, 19740249, 32580250, 51369131, 77968812, 114594493, 163845374, 228735375, 312723856, 419746337, 554245218, 721200499, 926160500, 1175272581, 1475313862, 1833721943, 2258625624, 2758875625, 3344075306
Offset: 0
(sqrt(2) + sqrt(1))^5 = 29*sqrt(2) + 41 = sqrt(1682) + sqrt(1681). So a(1) = 1681.
-
{a(n) = n*(16*n^2+20*n+5)^2}
-
concat(0, Vec(x*(1681 + 13676*x + 13686*x^2 + 1676*x^3 + x^4) / (1 - x)^6 + O(x^30))) \\ Colin Barker, Dec 25 2018
A322707
a(0)=0, a(1)=5 and a(n) = 22*a(n-1) - a(n-2) + 10 for n > 1.
Original entry on oeis.org
0, 5, 120, 2645, 58080, 1275125, 27994680, 614607845, 13493377920, 296239706405, 6503780163000, 142786923879605, 3134808545188320, 68823001070263445, 1510971215000607480, 33172543728943101125, 728284990821747617280, 15989097254349504479045
Offset: 0
(sqrt(6) + sqrt(5))^2 = 11 + 2*sqrt(30) = sqrt(121) + sqrt(120). So a(2) = 120.
A322708
a(0)=0, a(1)=6 and a(n) = 26*a(n-1) - a(n-2) + 12 for n > 1.
Original entry on oeis.org
0, 6, 168, 4374, 113568, 2948406, 76545000, 1987221606, 51591216768, 1339384414374, 34772403556968, 902743108066806, 23436548406180000, 608447515452613206, 15796198853361763368, 410092722671953234374, 10646614590617422330368, 276401886633381027355206
Offset: 0
(sqrt(7) + sqrt(6))^2 = 13 + 2*sqrt(42) = sqrt(169) + sqrt(168). So a(2) = 168.
-
LinearRecurrence[{27,-27,1},{0,6,168},20] (* Harvey P. Dale, Apr 30 2022 *)
-
concat(0, Vec(6*x*(1 + x) / ((1 - x)*(1 - 26*x + x^2)) + O(x^20))) \\ Colin Barker, Dec 24 2018
A322709
a(0)=0, a(1)=7 and a(n) = 30*a(n-1) - a(n-2) + 14 for n > 1.
Original entry on oeis.org
0, 7, 224, 6727, 201600, 6041287, 181037024, 5425069447, 162571046400, 4871706322567, 145988618630624, 4374786852596167, 131097616959254400, 3928553721925035847, 117725514040791821024, 3527836867501829594887, 105717380511014096025600, 3167993578462921051173127
Offset: 0
(sqrt(8) + sqrt(7))^2 = 15 + 2*sqrt(56) = sqrt(225) + sqrt(224). So a(2) = 224.
-
a:=[0,7]; [n le 2 select a[n] else 30*Self(n-1)-Self(n-2)+14: n in [1..18]]; // Marius A. Burtea, Nov 16 2019
-
R:=PowerSeriesRing(Integers(), 18); [0] cat Coefficients(R!(7*x*(1 + x) / ((1 - x)*(1-30*x + x^2)))); // Marius A. Burtea, Nov 16 2019
-
LinearRecurrence[{31,-31,1}, {0, 7, 224}, 18] (* Metin Sariyar, Nov 23 2019 *)
-
concat(0, Vec(7*x*(1 + x) / ((1 - x)*(1 - 30*x + x^2)) + O(x^20))) \\ Colin Barker, Dec 25 2018
Showing 1-9 of 9 results.
Comments