A023039
a(n) = 18*a(n-1) - a(n-2).
Original entry on oeis.org
1, 9, 161, 2889, 51841, 930249, 16692641, 299537289, 5374978561, 96450076809, 1730726404001, 31056625195209, 557288527109761, 10000136862780489, 179445175002939041, 3220013013190122249, 57780789062419261441
Offset: 0
G.f. = 1 + 9*x + 161*x^2 + 2889*x^3 + 51841*x4 + 930249*x^5 + 16692641*x^6 + ...
- Seiichi Manyama, Table of n, a(n) for n = 0..750 (terms 0..200 from Vincenzo Librandi)
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (18,-1).
-
I:=[1, 9]; [n le 2 select I[n] else 18*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 13 2012
-
a := n -> hypergeom([n, -n], [1/2], -4):
seq(simplify(a(n)), n=0..16); # Peter Luschny, Jul 26 2020
-
LinearRecurrence[{18, -1}, {1, 9}, 50] (* Sture Sjöstedt, Nov 29 2011 *)
CoefficientList[Series[(1-9*x)/(1-18*x+x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 19 2017 *)
-
{a(n) = fibonacci(6*n) / 2 + fibonacci(6*n - 1)}; /* Michael Somos, Aug 11 2009 */
-
x='x+O('x^30); Vec((1-9*x)/(1-18*x+x^2)) \\ G. C. Greubel, Dec 19 2017
A322699
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is 1/2 * (-1 + Sum_{j=0..k} binomial(2*k,2*j)*(n+1)^(k-j)*n^j).
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 8, 2, 0, 0, 49, 24, 3, 0, 0, 288, 242, 48, 4, 0, 0, 1681, 2400, 675, 80, 5, 0, 0, 9800, 23762, 9408, 1444, 120, 6, 0, 0, 57121, 235224, 131043, 25920, 2645, 168, 7, 0, 0, 332928, 2328482, 1825200, 465124, 58080, 4374, 224, 8, 0
Offset: 0
Square array begins:
0, 0, 0, 0, 0, 0, 0, ...
0, 1, 8, 49, 288, 1681, 9800, ...
0, 2, 24, 242, 2400, 23762, 235224, ...
0, 3, 48, 675, 9408, 131043, 1825200, ...
0, 4, 80, 1444, 25920, 465124, 8346320, ...
0, 5, 120, 2645, 58080, 1275125, 27994680, ...
0, 6, 168, 4374, 113568, 2948406, 76545000, ...
-
Unprotect[Power]; 0^0 := 1; Protect[Power]; Table[(-1 + Sum[Binomial[2 k, 2 j] (# + 1)^(k - j)*#^j, {j, 0, k}])/2 &[n - k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Jan 01 2019 *)
nmax = 9; row[n_] := LinearRecurrence[{4n+3, -4n-3, 1}, {0, n, 4n(n+1)}, nmax+1]; T = Array[row, nmax+1, 0]; A[n_, k_] := T[[n+1, k+1]];
Table[A[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 06 2019 *)
-
def ncr(n, r)
return 1 if r == 0
(n - r + 1..n).inject(:*) / (1..r).inject(:*)
end
def A(k, n)
(0..n).map{|i| (0..k).inject(-1){|s, j| s + ncr(2 * k, 2 * j) * (i + 1) ** (k - j) * i ** j} / 2}
end
def A322699(n)
a = []
(0..n).each{|i| a << A(i, n - i)}
ary = []
(0..n).each{|i|
(0..i).each{|j|
ary << a[i - j][j]
}
}
ary
end
p A322699(10)
A173148
a(n) = cos(2*n*arccos(sqrt(n))).
Original entry on oeis.org
1, 1, 17, 485, 18817, 930249, 55989361, 3974443213, 325142092801, 30122754096401, 3117419602578001, 356452534779818421, 44627167107085622401, 6071840759403431812825, 892064955046043465408177, 140751338790698080509966749, 23737154316161495960243527681
Offset: 0
Cf.
A053120 (Chebyshev polynomial),
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121,
A173127,
A173128,
A173129,
A173130,
A173131,
A173133,
A173134,
A322790.
-
a:=List([0..20],n->Sum([0..n],k->Binomial(2*n,2*k)*(n-1)^(n-k)*n^k));; Print(a); # Muniru A Asiru, Jan 03 2019
-
[&+[Binomial(2*n,2*k)*(n-1)^(n-k)*n^k: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Jan 03 2019
-
Table[Round[Cos[2 n ArcCos[Sqrt[n]]]], {n, 0, 30}] (* Artur Jasinski, Feb 11 2010 *)
-
{a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n-1)^(n-k)*n^k)} \\ Seiichi Manyama, Dec 27 2018
-
{a(n) = round(cosh(2*n*acosh(sqrt(n))))} \\ Seiichi Manyama, Dec 27 2018
-
{a(n) = polchebyshev(n, 1, 2*n-1)} \\ Seiichi Manyama, Dec 29 2018
A173174
a(n) = cosh(2*n*arcsinh(sqrt(n))).
Original entry on oeis.org
1, 3, 49, 1351, 51841, 2550251, 153090001, 10850138895, 886731088897, 82094249361619, 8491781781142001, 970614726270742103, 121485428812828080001, 16525390478051500325307, 2427469037137019032095121, 382956978214541873571486751, 64576903826545426454350012417, 11591229031806966336496244914595
Offset: 0
Cf.
A132592,
A146311 -
A146313,
A173115,
A173116 A173121,
A173127 -
A173131,
A173133,
A173134,
A173148,
A173151,
A173170,
A173171.
-
[&+[Binomial(2*n, 2*k)*(n+1)^(n-k)*n^k: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Dec 29 2018
-
A173174 := proc(n) cosh(2*n*arcsinh(sqrt(n))) ; expand(%) ; simplify(%) ; end proc: # R. J. Mathar, Feb 26 2011
-
Table[Round[N[Cosh[(2 n) ArcSinh[Sqrt[n]]], 100]], {n, 0, 30}] (* Artur Jasinski *)
Join[{1}, a[n_]:=Sum[Binomial[2 n, 2 k] (n + 1)^(n - k) n^k, {k, 0, n}]; Array[a, 25]] (* Vincenzo Librandi, Dec 29 2018 *)
-
{a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n+1)^(n-k)*n^k)} \\ Seiichi Manyama, Dec 26 2018
-
{a(n) = polchebyshev(n, 1, 2*n+1)} \\ Seiichi Manyama, Dec 29 2018
Original entry on oeis.org
1, 5, 161, 8749, 665857, 65160501, 7793761249, 1101696200669, 179689877047297, 33215554576822501, 6862186181491284001, 1566923219786361397005, 391868347839681254572801, 106523078497331434142611733, 31273034455313887578671676257
Offset: 0
-
{a(n) = sum(k=0, n, binomial(2*n, 2*k)*(2*n+1)^(n-k)*(2*n)^k)}
-
{a(n) = polchebyshev(n, 1, 4*n+1)}
A322830
a(n) = 32*n^3 + 48*n^2 + 18*n + 1.
Original entry on oeis.org
1, 99, 485, 1351, 2889, 5291, 8749, 13455, 19601, 27379, 36981, 48599, 62425, 78651, 97469, 119071, 143649, 171395, 202501, 237159, 275561, 317899, 364365, 415151, 470449, 530451, 595349, 665335, 740601, 821339, 907741, 999999, 1098305, 1202851, 1313829, 1431431, 1555849
Offset: 0
(sqrt(2) + sqrt(1))^6 = 99 + 70*sqrt(2) = 99 + sqrt(99^2 - 1). So a(1) = 99.
-
a:=List([0..40],n->32*n^3+48*n^2+18*n+1);; Print(a); # Muniru A Asiru, Jan 02 2019
-
[32*n^3+48*n^2+18*n+1$n=0..40]; # Muniru A Asiru, Jan 02 2019
-
CoefficientList[Series[(1 + x) (1 + 94 x + x^2)/(1 - x)^4, {x, 0, 36}], x] (* or *)
Array[ChebyshevT[3, 2 # + 1] &, 37, 0] (* Michael De Vlieger, Jan 01 2019 *)
Table[32n^3+48n^2+18n+1,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,99,485,1351},40] (* Harvey P. Dale, Mar 11 2019 *)
-
{a(n) = 32*n^3+48*n^2+18*n+1}
-
{a(n) = polchebyshev(3, 1, 2*n+1)}
-
Vec((1 + x)*(1 + 94*x + x^2) / (1 - x)^4 + O(x^40)) \\ Colin Barker, Dec 27 2018
Showing 1-6 of 6 results.
Comments