A173129
a(n) = cosh(2 * n * arccosh(n)).
Original entry on oeis.org
1, 1, 97, 19601, 7380481, 4517251249, 4097989415521, 5170128475599457, 8661355881006882817, 18605234632923999244961, 49862414878754347585980001, 163104845048002042971670685041, 639582975902942936737758325440001
Offset: 0
Cf.
A001079,
A037270,
A053120 (Chebyshev polynomial),
A058331,
A115066,
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121,
A173127,
A173128,
A173148.
-
seq(orthopoly[T](2*n,n), n=0..50); # Robert Israel, Dec 27 2018
-
Table[Round[Cosh[2 n ArcCosh[n]]], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *)
Round[Table[1/2 (x - Sqrt[ -1 + x^2])^(2 x) + 1/2 (x + Sqrt[ -1 + x^2])^(2 x), {x, 0, 10}]] (* Artur Jasinski, Feb 14 2010 *)
Table[ChebyshevT[2*n, n], {n, 0, 15}] (* Vaclav Kotesovec, Nov 07 2021 *)
-
{a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n^2-1)^(n-k)*n^(2*k))} \\ Seiichi Manyama, Dec 27 2018
-
{a(n) = polchebyshev(2*n, 1, n)} \\ Seiichi Manyama, Dec 28 2018
-
{a(n) = polchebyshev(n, 1, 2*n^2-1)} \\ Seiichi Manyama, Dec 29 2018
A322790
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Sum_{j=0..k} binomial(2*k,2*j)*(n+1)^(k-j)*n^j.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 17, 5, 1, 1, 99, 49, 7, 1, 1, 577, 485, 97, 9, 1, 1, 3363, 4801, 1351, 161, 11, 1, 1, 19601, 47525, 18817, 2889, 241, 13, 1, 1, 114243, 470449, 262087, 51841, 5291, 337, 15, 1, 1, 665857, 4656965, 3650401, 930249, 116161, 8749, 449, 17, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 3, 17, 99, 577, 3363, 19601, ...
1, 5, 49, 485, 4801, 47525, 470449, ...
1, 7, 97, 1351, 18817, 262087, 3650401, ...
1, 9, 161, 2889, 51841, 930249, 16692641, ...
1, 11, 241, 5291, 116161, 2550251, 55989361, ...
1, 13, 337, 8749, 227137, 5896813, 153090001, ...
-
A[0, k_] := 1; A[n_, k_] := Sum[Binomial[2 k, 2 j]*(n + 1)^(k - j)*n^j, {j, 0, k}]; Table[A[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 26 2018 *)
A173170
a(n) = sin^2((2n-1)*arcsin(sqrt n)) = 1 - sin^2( (2n-1)*arccos(sqrt n)).
Original entry on oeis.org
0, 1, 50, 23763, 25421764, 48225038405, 142786923879606, 608447515452613207, 3527836867501829594888, 26710782540478226038759689, 255922222218837615280903143610, 3026917140685147530327256796600411
Offset: 0
Cf.
A132592,
A146311,
A146312,
A146313,
A173115,
A173116 A173121,
A173127,
A173128,
A173129,
A173130,
A173131,
A173133,
A173134,
A173148,
A173151.
-
Table[Round[Sin[(2 n - 1) ArcSin[Sqrt[n]]]^2], {n, 0, 20}] (* Artur Jasinski, Feb 11 2010 *)
A173174
a(n) = cosh(2*n*arcsinh(sqrt(n))).
Original entry on oeis.org
1, 3, 49, 1351, 51841, 2550251, 153090001, 10850138895, 886731088897, 82094249361619, 8491781781142001, 970614726270742103, 121485428812828080001, 16525390478051500325307, 2427469037137019032095121, 382956978214541873571486751, 64576903826545426454350012417, 11591229031806966336496244914595
Offset: 0
Cf.
A132592,
A146311 -
A146313,
A173115,
A173116 A173121,
A173127 -
A173131,
A173133,
A173134,
A173148,
A173151,
A173170,
A173171.
-
[&+[Binomial(2*n, 2*k)*(n+1)^(n-k)*n^k: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Dec 29 2018
-
A173174 := proc(n) cosh(2*n*arcsinh(sqrt(n))) ; expand(%) ; simplify(%) ; end proc: # R. J. Mathar, Feb 26 2011
-
Table[Round[N[Cosh[(2 n) ArcSinh[Sqrt[n]]], 100]], {n, 0, 30}] (* Artur Jasinski *)
Join[{1}, a[n_]:=Sum[Binomial[2 n, 2 k] (n + 1)^(n - k) n^k, {k, 0, n}]; Array[a, 25]] (* Vincenzo Librandi, Dec 29 2018 *)
-
{a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n+1)^(n-k)*n^k)} \\ Seiichi Manyama, Dec 26 2018
-
{a(n) = polchebyshev(n, 1, 2*n+1)} \\ Seiichi Manyama, Dec 29 2018
A173171
a(n) = - sin^2((2n-1)*arccos(sqrt n)) = sin^2((2n-1)*arcsin(sqrt n)) - 1.
Original entry on oeis.org
-1, 0, 49, 23762, 25421763, 48225038404, 142786923879605, 608447515452613206, 3527836867501829594887, 26710782540478226038759688, 255922222218837615280903143609, 3026917140685147530327256796600410
Offset: 0
Cf.
A132592,
A146311,
A146312,
A146313,
A173115,
A173116 A173121,
A173127,
A173128,
A173129,
A173130,
A173131,
A173133,
A173134,
A173148,
A173151,
A173170.
A173175
a(n) = sinh^2( 2n*arcsinh(sqrt n)).
Original entry on oeis.org
0, 8, 2400, 1825200, 2687489280, 6503780163000, 23436548406180000, 117725514040791821024, 786292024016459316676608, 6739465778247681589030301160, 72110357818535214970387726284000, 942092946853627620313318842336862608, 14758709413836719039368938494112056160000
Offset: 0
Cf.
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121,
A173127,
A173128,
A173129,
A173130,
A173131,
A173133,
A173134,
A173148,
A173151,
A173170,
A173171,
A322699.
-
A173175 := proc(n) sinh(2*n*arcsinh(sqrt(n))) ; %^2 ; expand(%); simplify(%) ; end proc: # R. J. Mathar, Feb 26 2011
-
Table[Round[N[Sinh[(2 n) ArcSinh[Sqrt[n]]]^2, 100]], {n, 0, 20}]
-
{a(n) = (polchebyshev(2*n, 1, 2*n+1)-1)/2} \\ Seiichi Manyama, Jan 02 2019
-
{a(n) = 1/2*(-1+sum(k=0, 2*n, binomial(4*n, 2*k)*(n+1)^(2*n-k)*n^k))} \\ Seiichi Manyama, Jan 02 2019
A173194
a(n) = -sin^2 (2*n*arccos n) = - sin^2 (2*n*arcsin n).
Original entry on oeis.org
0, 0, 9408, 384199200, 54471499791360, 20405558846592060000, 16793517249722147195701440, 26730228454204365035835498694848, 75019085697452515216001640927169855488, 346154755746154620929434271983392498083891520
Offset: 0
Cf.
A132592,
A146311,
A146312,
A146313,
A173115,
A173116 A173121,
A173127,
A173128,
A173129,
A173130,
A173131,
A173133,
A173134,
A173148,
A173151,
A173170,
A173171,
A173174,
A173175,
A173176.
-
A173194 := proc(n) ((n+sqrt(n^2-1))^(2*n)-(n-sqrt(n^2-1))^(2*n))^2 ; expand(%/4) ; simplify(%) ; end proc: # R. J. Mathar, Feb 26 2011
-
Round[Table[ -N[Sin[2 n ArcSin[n]], 100]^2, {n, 0, 15}]] (* Artur Jasinski *)
Table[FullSimplify[(-1/2 (x - Sqrt[ -1 + x^2])^(2 x) + 1/2 (x + Sqrt[ -1 + x^2])^(2 x))^2], {x, 0, 7}] (* Artur Jasinski, Feb 17 2010 *)
Table[(n^2-1)*ChebyshevU[2*n-1, n]^2, {n, 0, 20}] (* Vaclav Kotesovec, Jan 05 2019 *)
-
{a(n) = (n^2-1)*n^2*(sum(k=0, n-1, binomial(2*n, 2*k+1)*(n^2-1)^(n-1-k)*n^(2*k)))^2} \\ Seiichi Manyama, Jan 05 2019
-
{a(n) = (n^2-1)*polchebyshev(2*n-1, 2, n)^2} \\ Seiichi Manyama, Jan 05 2019
A173150
a(n) = sinh^2 (2n*arccosh(sqrt n)).
Original entry on oeis.org
0, 0, 288, 235224, 354079488, 865363202000, 3134808545188320, 15796198853361763368, 105717380511014096025600, 907380314352243226001152800, 9718304978537581699085289156000
Offset: 0
Cf.
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121,
A173127,
A173128,
A173129,
A173130,
A173131,
A173133,
A173134,
A173148.
-
A173150 := proc(n) sinh(2*n*arccosh(sqrt(n))) ; %^2 ; expand(%) ; simplify(%) ;end proc: # R. J. Mathar, Feb 26 2011
-
Table[Round[-Sin[2 n ArcCos[Sqrt[n]]]^2], {n, 0, 20}] (* Artur Jasinski, Feb 11 2010 *)
Showing 1-8 of 8 results.
Comments