cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A173174 a(n) = cosh(2*n*arcsinh(sqrt(n))).

Original entry on oeis.org

1, 3, 49, 1351, 51841, 2550251, 153090001, 10850138895, 886731088897, 82094249361619, 8491781781142001, 970614726270742103, 121485428812828080001, 16525390478051500325307, 2427469037137019032095121, 382956978214541873571486751, 64576903826545426454350012417, 11591229031806966336496244914595
Offset: 0

Views

Author

Artur Jasinski, Feb 11 2010

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(2*n, 2*k)*(n+1)^(n-k)*n^k: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Dec 29 2018
  • Maple
    A173174 := proc(n) cosh(2*n*arcsinh(sqrt(n))) ; expand(%) ; simplify(%) ; end proc: # R. J. Mathar, Feb 26 2011
  • Mathematica
    Table[Round[N[Cosh[(2 n) ArcSinh[Sqrt[n]]], 100]], {n, 0, 30}] (* Artur Jasinski *)
    Join[{1}, a[n_]:=Sum[Binomial[2 n, 2 k] (n + 1)^(n - k) n^k, {k, 0, n}]; Array[a, 25]] (* Vincenzo Librandi, Dec 29 2018 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n+1)^(n-k)*n^k)} \\ Seiichi Manyama, Dec 26 2018
    
  • PARI
    {a(n) = polchebyshev(n, 1, 2*n+1)} \\ Seiichi Manyama, Dec 29 2018
    

Formula

a(n) = Sum_{k=0..n} binomial(2*n,2*k)*(n+1)^(n-k)*n^k. - Seiichi Manyama, Dec 26 2018
a(n) = T_{n}(2*n+1) where T_{n}(x) is a Chebyshev polynomial of the first kind. - Seiichi Manyama, Dec 29 2018

Extensions

More terms from Seiichi Manyama, Dec 26 2018

A173171 a(n) = - sin^2((2n-1)*arccos(sqrt n)) = sin^2((2n-1)*arcsin(sqrt n)) - 1.

Original entry on oeis.org

-1, 0, 49, 23762, 25421763, 48225038404, 142786923879605, 608447515452613206, 3527836867501829594887, 26710782540478226038759688, 255922222218837615280903143609, 3026917140685147530327256796600410
Offset: 0

Views

Author

Artur Jasinski, Feb 11 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[-N[ Sin[(2 n - 1) ArcCos[Sqrt[n]]]^2, 100]], {n, 0, 20}] (* Artur Jasinski, Feb 11 2010; Typo fixed by Vincenzo Librandi, Jun 29 2014 *)

A173175 a(n) = sinh^2( 2n*arcsinh(sqrt n)).

Original entry on oeis.org

0, 8, 2400, 1825200, 2687489280, 6503780163000, 23436548406180000, 117725514040791821024, 786292024016459316676608, 6739465778247681589030301160, 72110357818535214970387726284000, 942092946853627620313318842336862608, 14758709413836719039368938494112056160000
Offset: 0

Views

Author

Artur Jasinski, Feb 11 2010

Keywords

Crossrefs

Programs

  • Maple
    A173175 := proc(n) sinh(2*n*arcsinh(sqrt(n))) ; %^2 ; expand(%); simplify(%) ; end proc: # R. J. Mathar, Feb 26 2011
  • Mathematica
    Table[Round[N[Sinh[(2 n) ArcSinh[Sqrt[n]]]^2, 100]], {n, 0, 20}]
  • PARI
    {a(n) = (polchebyshev(2*n, 1, 2*n+1)-1)/2} \\ Seiichi Manyama, Jan 02 2019
    
  • PARI
    {a(n) = 1/2*(-1+sum(k=0, 2*n, binomial(4*n, 2*k)*(n+1)^(2*n-k)*n^k))} \\ Seiichi Manyama, Jan 02 2019

Formula

From Seiichi Manyama, Jan 02 2019: (Start)
a(n) = A322699(n,2*n).
a(n) = (T_{2*n}(2*n+1) - 1)/2 where T_{n}(x) is a Chebyshev polynomial of the first kind.
a(n) = 1/2 * (-1 + Sum_{k=0..2*n} binomial(4*n,2*k)*(n+1)^(2*n-k)*n^k). (End)
a(n) ~ exp(1) * 2^(4*n - 2) * n^(2*n). - Vaclav Kotesovec, Jan 02 2019

Extensions

a(11)-a(12) from Seiichi Manyama, Jan 02 2019

A173194 a(n) = -sin^2 (2*n*arccos n) = - sin^2 (2*n*arcsin n).

Original entry on oeis.org

0, 0, 9408, 384199200, 54471499791360, 20405558846592060000, 16793517249722147195701440, 26730228454204365035835498694848, 75019085697452515216001640927169855488, 346154755746154620929434271983392498083891520
Offset: 0

Views

Author

Artur Jasinski, Feb 12 2010

Keywords

Crossrefs

Programs

  • Maple
    A173194 := proc(n) ((n+sqrt(n^2-1))^(2*n)-(n-sqrt(n^2-1))^(2*n))^2 ; expand(%/4) ; simplify(%) ; end proc: # R. J. Mathar, Feb 26 2011
  • Mathematica
    Round[Table[ -N[Sin[2 n ArcSin[n]], 100]^2, {n, 0, 15}]] (* Artur Jasinski *)
    Table[FullSimplify[(-1/2 (x - Sqrt[ -1 + x^2])^(2 x) + 1/2 (x + Sqrt[ -1 + x^2])^(2 x))^2], {x, 0, 7}] (* Artur Jasinski, Feb 17 2010 *)
    Table[(n^2-1)*ChebyshevU[2*n-1, n]^2, {n, 0, 20}] (* Vaclav Kotesovec, Jan 05 2019 *)
  • PARI
    {a(n) = (n^2-1)*n^2*(sum(k=0, n-1, binomial(2*n, 2*k+1)*(n^2-1)^(n-1-k)*n^(2*k)))^2} \\ Seiichi Manyama, Jan 05 2019
    
  • PARI
    {a(n) = (n^2-1)*polchebyshev(2*n-1, 2, n)^2} \\ Seiichi Manyama, Jan 05 2019

Formula

4*a(n) = ( (n+sqrt(n^2-1))^(2*n) - (n-sqrt(n^2-1))^(2*n) )^2. - Artur Jasinski, Feb 17 2010
From Seiichi Manyama, Jan 05 2019: (Start)
a(n) = (n^2-1) * n^2 * (Sum_{k=0..n-1} binomial(2*n,2*k+1)*(n^2-1)^(n-1-k)*n^(2*k))^2.
For n > 0, a(n) = (n^2-1) * U_{2*n-1}(n)^2 where U_{n}(x) is a Chebyshev polynomial of the second kind. (End)
a(n) ~ 2^(4*n - 2) * n^(4*n). - Vaclav Kotesovec, Jan 05 2019

Extensions

a(9) from Seiichi Manyama, Jan 05 2019
Showing 1-4 of 4 results.