cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A322790 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Sum_{j=0..k} binomial(2*k,2*j)*(n+1)^(k-j)*n^j.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 17, 5, 1, 1, 99, 49, 7, 1, 1, 577, 485, 97, 9, 1, 1, 3363, 4801, 1351, 161, 11, 1, 1, 19601, 47525, 18817, 2889, 241, 13, 1, 1, 114243, 470449, 262087, 51841, 5291, 337, 15, 1, 1, 665857, 4656965, 3650401, 930249, 116161, 8749, 449, 17, 1
Offset: 0

Views

Author

Seiichi Manyama, Dec 26 2018

Keywords

Examples

			Square array begins:
   1,  1,   1,    1,      1,       1,         1, ...
   1,  3,  17,   99,    577,    3363,     19601, ...
   1,  5,  49,  485,   4801,   47525,    470449, ...
   1,  7,  97, 1351,  18817,  262087,   3650401, ...
   1,  9, 161, 2889,  51841,  930249,  16692641, ...
   1, 11, 241, 5291, 116161, 2550251,  55989361, ...
   1, 13, 337, 8749, 227137, 5896813, 153090001, ...
		

Crossrefs

Columns 0-3 give A000012, A005408, A069129(n+1), A322830.
Main diagonal gives A173174.
A(n-1,n) gives A173148(n).

Programs

  • Mathematica
    A[0, k_] := 1; A[n_, k_] := Sum[Binomial[2 k, 2 j]*(n + 1)^(k - j)*n^j, {j, 0, k}]; Table[A[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 26 2018 *)

Formula

a(n) = 2 * A322699(n) + 1.
A(n,k) + sqrt(A(n,k)^2 - 1) = (sqrt(n+1) + sqrt(n))^(2*k).
A(n,k) - sqrt(A(n,k)^2 - 1) = (sqrt(n+1) - sqrt(n))^(2*k).
A(n,0) = 1, A(n,1) = 2*n+1 and A(n,k) = (4*n+2) * A(n,k-1) - A(n,k-2) for k > 1.
A(n,k) = T_{k}(2*n+1) where T_{k}(x) is a Chebyshev polynomial of the first kind.
T_1(x) = x. So A(n,1) = 2*n+1.

A322746 a(n) = 1/2 * (-1 + Sum_{k=0..n} binomial(2*n,2*k)*(n+1)^(n-k)*n^k).

Original entry on oeis.org

0, 1, 24, 675, 25920, 1275125, 76545000, 5425069447, 443365544448, 41047124680809, 4245890890571000, 485307363135371051, 60742714406414040000, 8262695239025750162653, 1213734518568509516047560, 191478489107270936785743375, 32288451913272713227175006208
Offset: 0

Views

Author

Seiichi Manyama, Dec 25 2018

Keywords

Examples

			(sqrt(3) + sqrt(2))^2 = 5 + 2*sqrt(6) = sqrt(25) + sqrt(24). So a(2) = 24.
		

Crossrefs

Main diagonal of A322699.
Cf. A322747.

Programs

  • PARI
    {a(n) = 1/2*(-1+sum(k=0, n, binomial(2*n,2*k)*(n+1)^(n-k)*n^k))}
    
  • PARI
    {a(n) = (polchebyshev(n, 1, 2*n+1)-1)/2}

Formula

sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^n.
sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(n+1) - sqrt(n))^n.
a(n) = (A173174(n) - 1)/2.
a(n) ~ exp(1/2) * 2^(2*n - 2) * n^n. - Vaclav Kotesovec, Dec 25 2018
Showing 1-2 of 2 results.