A011943
Numbers k such that any group of k consecutive integers has integral standard deviation (viz. A011944(k)).
Original entry on oeis.org
1, 7, 97, 1351, 18817, 262087, 3650401, 50843527, 708158977, 9863382151, 137379191137, 1913445293767, 26650854921601, 371198523608647, 5170128475599457, 72010600134783751, 1002978273411373057, 13969685227624439047, 194572614913330773601, 2710046923559006391367
Offset: 1
- P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238. - N. J. A. Sloane, Mar 03 2022
- Robert Israel, Table of n, a(n) for n = 1..788
- Jim Delany, Roger Douglass, Mike Breen and Roger B. Eggleton, Problem E 3302: Averaging to Integers, The American Mathematical Monthly, Vol. 97, No. 5 (May, 1990), p. 432.
- R. K. Guy, Letter to N. J. A. Sloane concerning A001075, A011943, A094347 [Scanned and annotated letter, included with permission]
- Tanya Khovanova, Recursive Sequences
- Jiri Lebl and Daniel Lichtblau, Uniqueness of certain polynomials constant on a hyperplane, arXiv:0808.0284 [math.CV], 2008-2010.
- E. Keith Lloyd, The Standard Deviation of 1, 2,..., n: Pell's Equation and Rational Triangles, Math. Gaz. vol 81 (1997), 231-243.
- Ronald S. Tiberio, Solution to Problem E 3302 [Broken link]
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (14,-1).
-
I:=[1,7]; [n le 2 select I[n] else 14*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 19 2015
-
seq(orthopoly[T](n,7), n = 0..50); # Robert Israel, Jun 02 2015
a := n -> (-1)^(n+1)*hypergeom([n-1, -n+1], [1/2], 4):
seq(simplify(a(n)), n=1..20); # Peter Luschny, Jul 26 2020
-
LinearRecurrence[{14,-1},{1,7},30] (* Harvey P. Dale, Dec 16 2013 *)
a[n_]:=1/2((7-4 Sqrt[3])^n+(7+4 Sqrt[3])^n); Table[a[n] // Simplify,{n,0,20}] (* Gerry Martens, May 30 2015 *)
-
a(n)=if(n<0,0,subst(poltchebi(n),x,7))
-
g(n) = forstep(x=1,n,3,y=(x^2-1)/3;if(issquare(y),print1(x","))) \\ Cino Hilliard, Mar 05 2005
A041041
Denominators of continued fraction convergents to sqrt(26).
Original entry on oeis.org
1, 10, 101, 1020, 10301, 104030, 1050601, 10610040, 107151001, 1082120050, 10928351501, 110365635060, 1114584702101, 11256212656070, 113676711262801, 1148023325284080, 11593909964103601, 117087122966320090, 1182465139627304501, 11941738519239365100
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Sergio Falcón and Ángel Plaza, On the Fibonacci k-numbers, Chaos, Solitons & Fractals 2007; 32(5): 1615-24.
- Sergio Falcón and Ángel Plaza, The k-Fibonacci sequence and the Pascal 2-triangle Chaos, Solitons & Fractals 2007; 33(1): 38-49.
- Sergio Falcón and Ángel Plaza, On k-Fibonacci sequences and polynomials and their derivatives, Chaos, Solitons & Fractals (2007).
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- Kai Wang, On k-Fibonacci Sequences And Infinite Series List of Results and Examples, 2020.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (10,1).
-
I:=[1,10]; [n le 2 select I[n] else 10*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
-
seq(combinat:-fibonacci(n+1, 10), n=0..19); # Peter Luschny, May 04 2018
-
Denominator[Convergents[Sqrt[26], 30]] (* Vincenzo Librandi, Dec 10 2013 *)
LinearRecurrence[{10,1}, {1,10}, 30] (* G. C. Greubel, Jan 24 2018 *)
-
x='x+O('x^30); Vec(1/(1-10*x-x^2)) \\ G. C. Greubel, Jan 24 2018
-
[lucas_number1(n,10,-1) for n in range(1, 19)] # Zerinvary Lajos, Apr 26 2009
A007654
Numbers k such that the standard deviation of 1,...,k is an integer.
Original entry on oeis.org
0, 3, 48, 675, 9408, 131043, 1825200, 25421763, 354079488, 4931691075, 68689595568, 956722646883, 13325427460800, 185599261804323, 2585064237799728, 36005300067391875, 501489136705686528, 6984842613812219523, 97286307456665386800, 1355023461779503195683
Offset: 1
- Guy Alarcon and Yves Duval, TS: Préparation au Concours Général, RMS, Collection Excellence, Paris, 2010, chapitre 13, Questions proposées aux élèves de Terminale S, Exercice 1, p. 220, p. 223.
- D. A. Benaron, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..100
- Tanya Khovanova, Recursive Sequences
- E. Keith Lloyd, The Standard Deviation of 1, 2,..., n: Pell's Equation and Rational Triangles, Math. Gaz. vol 81 (1997), 231-243.
- Index entries for linear recurrences with constant coefficients, signature (15,-15,1).
-
I:=[0,3]; [n le 2 select I[n] else 14*Self(n-1)-Self(n-2)+6: n in [1..20]]; // Vincenzo Librandi, Mar 05 2016
-
RecurrenceTable[{a[m] == 14 a[m - 1] - a[m - 2] + 6, a[1] == 0, a[2] == 3}, a, {m, 1, 17}] (* Michael De Vlieger, Jul 02 2015 *)
CoefficientList[Series[-3 x^2*(1 + x)/(-1 + x)/(1 - 14 x + x^2), {x, 0, 17}], x] (* Michael De Vlieger, Feb 02 2016 *)
-
concat(0,3*Vec((1+x)/(1-x)/(1-14*x+x^2)+O(x^98))) \\ Charles R Greathouse IV, May 14 2013
Corrected by Keith Lloyd, Mar 15 1996
A207832
Numbers x such that 20*x^2 + 1 is a perfect square.
Original entry on oeis.org
0, 2, 36, 646, 11592, 208010, 3732588, 66978574, 1201881744, 21566892818, 387002188980, 6944472508822, 124613502969816, 2236098580947866, 40125160954091772, 720016798592704030
Offset: 0
- Bruno Berselli, Table of n, a(n) for n = 0..500
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Index entries for linear recurrences with constant coefficients, signature (18,-1).
-
m:=16; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2*x/(1-18*x+x^2))); // Bruno Berselli, Jun 19 2019
-
readlib(issqr):for x from 1 to 720016798592704030 do if issqr(20*x^2+1) then print(x) fi od;
-
LinearRecurrence[{18, -1}, {0, 2}, 16] (* Bruno Berselli, Feb 21 2012 *)
Table[2 ChebyshevU[-1 + n, 9], {n, 0, 16}] (* Herbert Kociemba, Jun 05 2022 *)
-
makelist(expand(((2+sqrt(5))^(2*n)-(2-sqrt(5))^(2*n))/(4*sqrt(5))), n, 0, 15); /* Bruno Berselli, Jun 19 2019 */
Showing 1-4 of 4 results.
Comments