cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007662 Quadruple factorial numbers n!!!!: a(n) = n*a(n-4).

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 12, 21, 32, 45, 120, 231, 384, 585, 1680, 3465, 6144, 9945, 30240, 65835, 122880, 208845, 665280, 1514205, 2949120, 5221125, 17297280, 40883535, 82575360, 151412625, 518918400, 1267389585, 2642411520, 4996616625
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. Spanier and K. B. Oldham, An Atlas of Functions, Hemisphere, NY, 1987, p. 23.

Crossrefs

Programs

  • Magma
    I:=[ 1, 1, 2, 3 ]; [ n le 4 select I[n] else (n-1)*Self(n-4): n in [1..36] ]; // Klaus Brockhaus, Jun 23 2011
    
  • Magma
    A007662:=func< n | n eq 0 select 1 else &*[ k: k in [1..n] | k mod 4 eq n mod 4 ] >; [ A007662(n): n in [0..35] ]; // Klaus Brockhaus, Jun 23 2011
    
  • Mathematica
    NFactorialM[n_Integer, m_Integer] := Block[{k = n, p = Max[1, n]}, While[k > m, k -= m; p *= k]; p]; Table[ NFactorialM[n, 4], {n, 0, 34}] (* Robert G. Wilson v *)
    With[{k = 4}, Table[With[{q = Quotient[n + k - 1, k]}, k^q q! Binomial[n/k, q]], {n, 0, 34}]] (* Jan Mangaldan, Mar 21 2013 *)
  • PARI
    a(n)=if(n<6,max(n,1),n*a(n-4)) \\ Charles R Greathouse IV, Jun 23 2011

Formula

a(n) ~ c * n^(n/4+1/2)/exp(n/4), where c = sqrt(Pi/2) if n=4*k, c = 2*sqrt(Pi)/Gamma(1/4) if n=4*k+1, c = sqrt(2) if n=4*k+2, c = sqrt(Pi)/Gamma(3/4) if n=4*k+3. - Vaclav Kotesovec, Jul 29 2013
Sum_{n>=0} 1/a(n) = A288091. - Amiram Eldar, Nov 10 2020