A007693 Primes p such that 6*p + 1 is also prime.
2, 3, 5, 7, 11, 13, 17, 23, 37, 47, 61, 73, 83, 101, 103, 107, 131, 137, 151, 173, 181, 233, 241, 257, 263, 271, 277, 283, 293, 311, 313, 331, 347, 367, 373, 397, 443, 461, 467, 503, 557, 577, 593, 601, 607, 641, 653, 661, 683, 727, 751, 761, 773, 787, 797, 853
Offset: 1
References
- Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 83.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
- Andrew Granville, Sophie Germain's theorem for prime pairs p, 6p+1, J. Number Theory 27 (1987), no. 1, 63-72.
Crossrefs
Programs
-
Magma
[n: n in [0..1000] | IsPrime(n) and IsPrime(6*n+1)]; // Vincenzo Librandi, Nov 18 2010
-
Mathematica
Select[Prime@Range[150], PrimeQ[6# + 1] &] (* Ray Chandler, Mar 14 2007 *)
-
PARI
isok(k) = isprime(k) && isprime(6*k+1); \\ Amiram Eldar, Feb 24 2025
Formula
a(n) = (A051644(n)-1)/6.
Extensions
Extended by Ray Chandler, Mar 14 2007