cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007706 a(n) = 1 + coefficient of x^n in Product_{k>=1} (1-x^k) (essentially the expansion of the Dedekind function eta(x)).

Original entry on oeis.org

2, 0, 0, 1, 1, 2, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Sep 19 1994

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 825.
  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 70.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A010815.

Programs

  • Maple
    eta := q^(1/24)*mul( (1-q^m), m=1..100);
  • Mathematica
    p[n_] := p[n] = Expand[p[n-1]*(1-x^n)]; p[1] = 1-x; a[n_] := 1+Coefficient[p[n], x^n]; a[0] = 2; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Jan 06 2012 *)
    1 + CoefficientList[QPochhammer[q] + O[q]^120, q] (* Jean-François Alcover, Nov 24 2015 *)
  • PARI
    a(n)=if(n<0,0,1+polcoeff(eta(x+x*O(x^n)),n)) /* Michael Somos, Jun 26 2004 */

Formula

eta(z) = q^(1/24) Product_{m>=1} (1-q^m), q=exp(2 Pi i z).
G.f.: 1/(1-x) + Product_{k>0} (1-x^k). - Michael Somos, Jun 26 2004