cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A062246 McKay-Thompson series of class 27c for the Monster group.

Original entry on oeis.org

1, -1, -1, 0, 0, 1, 0, 1, 0, 1, -1, -1, -1, 0, 1, -1, 1, 0, 2, -2, -2, -1, 1, 2, -1, 2, 1, 3, -3, -3, -2, 1, 3, -2, 3, 0, 5, -5, -5, -3, 1, 5, -3, 5, 1, 7, -7, -7, -5, 2, 7, -4, 7, 1, 11, -11, -11, -6, 3, 11, -6, 11, 2, 15, -15, -15, -10, 4, 15, -9, 14, 2, 22, -22, -22, -13, 6, 21, -12, 21, 4, 30, -30, -30, -19, 8, 29, -17, 28, 4, 42
Offset: 0

Views

Author

N. J. A. Sloane, Jul 01 2001

Keywords

Examples

			1 - x - x^2 + x^5 + x^7 + x^9 - x^10 - x^11 - x^12 + x^14 - x^15 + x^16 + ...
T27c = 1/q - q^2 - q^5 + q^14 + q^20 + q^26 - q^29 - q^32 - q^35 + q^41 - ...
		

Crossrefs

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q]/QP[q^9] + O[q]^90; CoefficientList[s, q] (* Jean-François Alcover, Nov 12 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) / eta(x^9 + A), n))} /* Michael Somos, Jun 26 2004 */

Formula

Expansion of q^(1/3) * eta(q) / eta(q^9) in powers of q.
Euler transform of period 9 sequence [ -1, -1, -1, -1, -1, -1, -1, -1, 0, ...].
a(n) = (-1)^n * A062245(n).
a(n) = -(1/n)*Sum_{k=1..n} A116607(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017

Extensions

Additional comments from Michael Somos, Jun 28 2004

A062245 Expansion of Hauptmodul for group G'_{27|3}.

Original entry on oeis.org

1, 1, -1, 0, 0, -1, 0, -1, 0, -1, -1, 1, -1, 0, 1, 1, 1, 0, 2, 2, -2, 1, 1, -2, -1, -2, 1, -3, -3, 3, -2, -1, 3, 2, 3, 0, 5, 5, -5, 3, 1, -5, -3, -5, 1, -7, -7, 7, -5, -2, 7, 4, 7, -1, 11, 11, -11, 6, 3, -11, -6, -11, 2, -15, -15, 15, -10, -4, 15, 9, 14, -2, 22, 22, -22, 13, 6, -21, -12, -21, 4, -30, -30, 30, -19, -8, 29, 17, 28, -4, 42
Offset: 0

Views

Author

N. J. A. Sloane, Jul 01 2001

Keywords

Examples

			G.f. = 1 + x - x^2 - x^5 - x^7 - x^9 - x^10 + x^11 - x^12 + x^14 + x^15 + x^16 + ...
G.f. = 1/q + q^2 - q^5 - q^14 - q^20 - q^26 - q^29 + q^32 - q^35 + q^41 + q^44 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = local(A); if( n<0, 0,A = x * O(x^n); polcoeff( eta(-x + A) / eta(-x^9 + A), n))}; /* Michael Somos, Jun 26 2004 */

Formula

Expansion of q^(1/3) * eta(q^2)^3 * eta(q^9) * eta(q^36) / (eta(q) * eta(q^12) * eta(q^18)^3) in powers of q.
Euler transform of period 36 sequence [ 1, -2, 1, -1, 1, -2, 1, -1, 0, -2, 1, -1, 1, -2, 1, -1, 1, 0, 1, -1, 1, -2, 1, -1, 1, -2, 0, -1, 1, -2, 1, -1, 1, -2, 1, 0, ...].
a(n) = (-1)^n * A062246(n).

A345986 Numbers k > 0 such that the k-th power of the Dedekind eta-function is lacunary.

Original entry on oeis.org

2, 4, 6, 8, 10, 14, 26
Offset: 1

Views

Author

Simon Plouffe and N. J. A. Sloane, Jul 10 2021, following a suggestion from Francis Sanchez

Keywords

Crossrefs

Cf. A007706.
Showing 1-3 of 3 results.