cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007714 Number of 5-level rooted trees with n leaves.

Original entry on oeis.org

1, 1, 5, 15, 55, 170, 571, 1789, 5727, 17836, 55627, 171169, 524879, 1595896, 4829894, 14527981, 43497312, 129588391, 384430264, 1135607519, 3341662498, 9796626673, 28620419254, 83334382425, 241879403752, 699937499318, 2019607806247, 5811320364410, 16677611788799
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=5 of A290353.

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: b[0]:= etr(1): for k from 1 to 2 do b[k]:= etr(b[k-1]) od: a:= etr(b[2]): seq(a(n), n=0..25); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    i[ n_, m_ ] := 1 /; m==1 || n==0; i[ n_, m_ ] := (i[ n, m ]=1/n Sum[ i[ k, m ] Plus @@ ((# i[ #, m-1 ])& /@ Divisors[ n-k ]), {k, 0, n-1} ]) /; n>0 && m>1
    (* Second program: *)
    A[0|1, ] = A[, 1] = 1; A[n_, k_] := A[n, k] = Sum[DivisorSum[j, A[#, k-1] * #&]*A[n-j, k], {j, 1, n}]/n;
    a[n_] := A[n, 5];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 16 2018, after A290353 *)

Formula

Euler transform applied 4 times to all-1's sequence.

Extensions

More terms from Christian G. Bower, Aug 15 1998