A290353
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the k-th Euler transform of the sequence with g.f. 1+x.
Original entry on oeis.org
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 3, 1, 0, 1, 1, 4, 6, 5, 1, 0, 1, 1, 5, 10, 14, 7, 1, 0, 1, 1, 6, 15, 30, 27, 11, 1, 0, 1, 1, 7, 21, 55, 75, 58, 15, 1, 0, 1, 1, 8, 28, 91, 170, 206, 111, 22, 1, 0, 1, 1, 9, 36, 140, 336, 571, 518, 223, 30, 1, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, ...
0, 1, 3, 6, 10, 15, 21, 28, 36, ...
0, 1, 5, 14, 30, 55, 91, 140, 204, ...
0, 1, 7, 27, 75, 170, 336, 602, 1002, ...
0, 1, 11, 58, 206, 571, 1337, 2772, 5244, ...
0, 1, 15, 111, 518, 1789, 5026, 12166, 26328, ...
0, 1, 22, 223, 1344, 5727, 19193, 54046, 133476, ...
Rows 0+1,2-10 give:
A000012,
A001477,
A000217,
A000330,
A007715,
A290360,
A290361,
A290362,
A290363,
A290364.
-
with(numtheory):
A:= proc(n, k) option remember; `if`(n<2, 1, `if`(k=0, 0, add(
add(A(d, k-1)*d, d=divisors(j))*A(n-j, k), j=1..n)/n))
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
A[n_, k_]:=b[n, k]=If[n<2, 1, If[k==0, 0, Sum[Sum[A[d, k - 1]*d, {d, Divisors[j]}] A[n - j, k], {j, n}]/n]]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}]//Flatten (* Indranil Ghosh, Jul 30 2017, after Maple code *)
A000334
Number of 4-dimensional partitions of n.
Original entry on oeis.org
1, 5, 15, 45, 120, 326, 835, 2145, 5345, 13220, 32068, 76965, 181975, 425490, 982615, 2245444, 5077090, 11371250, 25235790, 55536870, 121250185, 262769080, 565502405, 1209096875, 2569270050, 5427963902, 11404408525, 23836421895, 49573316740, 102610460240
Offset: 1
From _Gus Wiseman_, Jan 23 2019: (Start)
The a(1) = 1 through a(3) = 15 four-dimensional partitions, represented as chains of chains of chains of integer partitions:
(((1))) (((2))) (((3)))
(((11))) (((21)))
(((1)(1))) (((111)))
(((1))((1))) (((2)(1)))
(((1)))(((1))) (((11)(1)))
(((2))((1)))
(((1)(1)(1)))
(((11))((1)))
(((2)))(((1)))
(((1)(1))((1)))
(((11)))(((1)))
(((1))((1))((1)))
(((1)(1)))(((1)))
(((1))((1)))(((1)))
(((1)))(((1)))(((1)))
(End)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Suresh Govindarajan, Table of n, a(n) for n = 1..40
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy], DOI
- S. Balakrishnan, S. Govindarajan and N. S. Prabhakar, On the asymptotics of higher-dimensional partitions, arXiv:1105.6231 [cond-mat.stat-mech], 2011.
- S. P. Naveen, On The Asymptotics of Some Counting Problems in Physics, Thesis, Bachelor of Technology, Department of Physics, Indian Institute of Technology, Madras, May 2011.
-
trans[x_]:=If[x=={},{},Transpose[x]];
levptns[n_,k_]:=If[k==1,IntegerPartitions[n],Join@@Table[Select[Tuples[levptns[#,k-1]&/@y],And@@(GreaterEqual@@@trans[Flatten/@(PadRight[#,ConstantArray[n,k-1]]&/@#)])&],{y,IntegerPartitions[n]}]];
Table[Length[levptns[n,4]],{n,8}] (* Gus Wiseman, Jan 24 2019 *)
A050340
Number of ways of factoring n with 3 levels of parentheses.
Original entry on oeis.org
1, 1, 1, 5, 1, 5, 1, 15, 5, 5, 1, 25, 1, 5, 5, 55, 1, 25, 1, 25, 5, 5, 1, 105, 5, 5, 15, 25, 1, 35, 1, 170, 5, 5, 5, 145, 1, 5, 5, 105, 1, 35, 1, 25, 25, 5, 1, 425, 5, 25, 5, 25, 1, 105, 5, 105, 5, 5, 1, 205, 1, 5, 25, 571, 5, 35, 1, 25, 5, 35, 1, 660, 1, 5, 25, 25, 5, 35, 1, 425, 55, 5
Offset: 1
4 = (((4))) = (((2*2))) = (((2)*(2))) = (((2))*((2))) = (((2)))*(((2))).
A055886
Euler transform applied three times to partition triangle A008284.
Original entry on oeis.org
1, 1, 4, 1, 4, 10, 1, 8, 16, 30, 1, 8, 32, 54, 75, 1, 12, 48, 128, 176, 206, 1, 12, 70, 210, 443, 535, 518, 1, 16, 92, 362, 842, 1485, 1585, 1344, 1, 16, 124, 516, 1544, 3075, 4676, 4527, 3357, 1, 20, 152, 770, 2500, 6133, 10622, 14336, 12664, 8429, 1, 20, 190, 1030, 3952, 10718, 22524, 34918, 42426, 34631, 20759
Offset: 1
1;
1, 4;
1, 4, 10;
1, 8, 16, 30;
1, 8, 32, 54, 75;
...
A290355
The sixth Euler transform of the sequence with g.f. 1+x.
Original entry on oeis.org
1, 1, 6, 21, 91, 336, 1337, 5026, 19193, 71769, 268272, 992676, 3659116, 13400426, 48863017, 177299790, 640713627, 2305930966, 8268556438, 29544196129, 105215495691, 373523546056, 1322096328899, 4666327388034, 16425341129078, 57667752483279, 201967215942032
Offset: 0
-
with(numtheory):
b:= proc(n, k) option remember; `if`(n<2, 1, `if`(k=0, 0, add(
add(b(d, k-1)*d, d=divisors(j))*b(n-j, k), j=1..n)/n))
end:
a:= n-> b(n, 6):
seq(a(n), n=0..30);
-
b[n_, k_]:=b[n, k]=If[n<2, 1, If[k==0, 0, Sum[Sum[b[d, k - 1]*d, {d, Divisors[j]}] b[n - j, k], {j, n}]/n]]; Table[b[n, 6], {n, 0, 30}] (* Indranil Ghosh, Jul 30 2017, after Maple code *)
Showing 1-5 of 5 results.
Comments