cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A290353 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the k-th Euler transform of the sequence with g.f. 1+x.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 3, 1, 0, 1, 1, 4, 6, 5, 1, 0, 1, 1, 5, 10, 14, 7, 1, 0, 1, 1, 6, 15, 30, 27, 11, 1, 0, 1, 1, 7, 21, 55, 75, 58, 15, 1, 0, 1, 1, 8, 28, 91, 170, 206, 111, 22, 1, 0, 1, 1, 9, 36, 140, 336, 571, 518, 223, 30, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jul 28 2017

Keywords

Comments

A(n,k) is the number of unlabeled rooted trees with exactly n leaves, all in level k. A(3,3) = 6:
: o o o o o o
: | | | / \ / \ /|\
: o o o o o o o o o o
: | / \ /|\ | | ( ) | | | |
: o o o o o o o o o o o o o o
: /|\ ( ) | | | | ( ) | | | | | | |
: o o o o o o o o o o o o o o o o o o

Examples

			Square array A(n,k) begins:
  1, 1,  1,   1,    1,    1,     1,     1,      1, ...
  1, 1,  1,   1,    1,    1,     1,     1,      1, ...
  0, 1,  2,   3,    4,    5,     6,     7,      8, ...
  0, 1,  3,   6,   10,   15,    21,    28,     36, ...
  0, 1,  5,  14,   30,   55,    91,   140,    204, ...
  0, 1,  7,  27,   75,  170,   336,   602,   1002, ...
  0, 1, 11,  58,  206,  571,  1337,  2772,   5244, ...
  0, 1, 15, 111,  518, 1789,  5026, 12166,  26328, ...
  0, 1, 22, 223, 1344, 5727, 19193, 54046, 133476, ...
		

Crossrefs

Main diagonal gives A290354.
Cf. A144150.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n<2, 1, `if`(k=0, 0, add(
          add(A(d, k-1)*d, d=divisors(j))*A(n-j, k), j=1..n)/n))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_]:=b[n, k]=If[n<2, 1, If[k==0, 0, Sum[Sum[A[d, k - 1]*d, {d, Divisors[j]}] A[n - j, k], {j, n}]/n]]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}]//Flatten (* Indranil Ghosh, Jul 30 2017, after Maple code *)

Formula

G.f. of column k=0: 1+x, of column k>0: Product_{j>0} 1/(1-x^j)^A(j,k-1).

A000334 Number of 4-dimensional partitions of n.

Original entry on oeis.org

1, 5, 15, 45, 120, 326, 835, 2145, 5345, 13220, 32068, 76965, 181975, 425490, 982615, 2245444, 5077090, 11371250, 25235790, 55536870, 121250185, 262769080, 565502405, 1209096875, 2569270050, 5427963902, 11404408525, 23836421895, 49573316740, 102610460240
Offset: 1

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Jan 23 2019: (Start)
The a(1) = 1 through a(3) = 15 four-dimensional partitions, represented as chains of chains of chains of integer partitions:
  (((1)))  (((2)))         (((3)))
           (((11)))        (((21)))
           (((1)(1)))      (((111)))
           (((1))((1)))    (((2)(1)))
           (((1)))(((1)))  (((11)(1)))
                           (((2))((1)))
                           (((1)(1)(1)))
                           (((11))((1)))
                           (((2)))(((1)))
                           (((1)(1))((1)))
                           (((11)))(((1)))
                           (((1))((1))((1)))
                           (((1)(1)))(((1)))
                           (((1))((1)))(((1)))
                           (((1)))(((1)))(((1)))
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000219 (2-dim), A000293 (3-dim), A000390 (5-dim), A096751 (k-dim).

Programs

  • Mathematica
    trans[x_]:=If[x=={},{},Transpose[x]];
    levptns[n_,k_]:=If[k==1,IntegerPartitions[n],Join@@Table[Select[Tuples[levptns[#,k-1]&/@y],And@@(GreaterEqual@@@trans[Flatten/@(PadRight[#,ConstantArray[n,k-1]]&/@#)])&],{y,IntegerPartitions[n]}]];
    Table[Length[levptns[n,4]],{n,8}] (* Gus Wiseman, Jan 24 2019 *)

Extensions

More terms from Sean A. Irvine, Nov 14 2010

A050340 Number of ways of factoring n with 3 levels of parentheses.

Original entry on oeis.org

1, 1, 1, 5, 1, 5, 1, 15, 5, 5, 1, 25, 1, 5, 5, 55, 1, 25, 1, 25, 5, 5, 1, 105, 5, 5, 15, 25, 1, 35, 1, 170, 5, 5, 5, 145, 1, 5, 5, 105, 1, 35, 1, 25, 25, 5, 1, 425, 5, 25, 5, 25, 1, 105, 5, 105, 5, 5, 1, 205, 1, 5, 25, 571, 5, 35, 1, 25, 5, 35, 1, 660, 1, 5, 25, 25, 5, 35, 1, 425, 55, 5
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

a(n) depends only on the prime signature of n (cf. A025487). So a(24) = a(375) since 24=2^3*3 and 375=3*5^3 both have prime signature (3,1).

Examples

			4 = (((4))) = (((2*2))) = (((2)*(2))) = (((2))*((2))) = (((2)))*(((2))).
		

Crossrefs

Formula

Dirichlet g.f.: Product{n=2..infinity} (1/(1-1/n^s)^A050338(n)).
a(n) = A050341(A101296(n)). - R. J. Mathar, May 26 2017

A055886 Euler transform applied three times to partition triangle A008284.

Original entry on oeis.org

1, 1, 4, 1, 4, 10, 1, 8, 16, 30, 1, 8, 32, 54, 75, 1, 12, 48, 128, 176, 206, 1, 12, 70, 210, 443, 535, 518, 1, 16, 92, 362, 842, 1485, 1585, 1344, 1, 16, 124, 516, 1544, 3075, 4676, 4527, 3357, 1, 20, 152, 770, 2500, 6133, 10622, 14336, 12664, 8429, 1, 20, 190, 1030, 3952, 10718, 22524, 34918, 42426, 34631, 20759
Offset: 1

Views

Author

Christian G. Bower, Jun 09 2000

Keywords

Examples

			  1;
  1, 4;
  1, 4, 10;
  1, 8, 16, 30;
  1, 8, 32, 54, 75;
  ...
		

Crossrefs

Row sums give A007714.
Main diagonal gives A007713.

A290355 The sixth Euler transform of the sequence with g.f. 1+x.

Original entry on oeis.org

1, 1, 6, 21, 91, 336, 1337, 5026, 19193, 71769, 268272, 992676, 3659116, 13400426, 48863017, 177299790, 640713627, 2305930966, 8268556438, 29544196129, 105215495691, 373523546056, 1322096328899, 4666327388034, 16425341129078, 57667752483279, 201967215942032
Offset: 0

Views

Author

Alois P. Heinz, Jul 28 2017

Keywords

Comments

Also the number of 6-level rooted trees with n leaves. All n leaves are in level 6. a(2) = 6:
: o o o o o o
: | | | | | ( )
: o o o o o o o
: | | | | ( ) | |
: o o o o o o o o
: | | | ( ) | | | |
: o o o o o o o o o
: | | ( ) | | | | | |
: o o o o o o o o o o
: | ( ) | | | | | | | |
: o o o o o o o o o o o
: ( ) | | | | | | | | | |
: o o o o o o o o o o o o

Crossrefs

Column k=6 of A290353.
Cf. A007714.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n<2, 1, `if`(k=0, 0, add(
          add(b(d, k-1)*d, d=divisors(j))*b(n-j, k), j=1..n)/n))
        end:
    a:= n-> b(n, 6):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, k_]:=b[n, k]=If[n<2, 1, If[k==0, 0, Sum[Sum[b[d, k - 1]*d, {d, Divisors[j]}] b[n - j, k], {j, n}]/n]]; Table[b[n, 6], {n, 0, 30}] (* Indranil Ghosh, Jul 30 2017, after Maple code *)

Formula

G.f.: Product_{j>0} 1/(1-x^j)^A007714(j).
Showing 1-5 of 5 results.