cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A001970 Functional determinants; partitions of partitions; Euler transform applied twice to all 1's sequence.

Original entry on oeis.org

1, 1, 3, 6, 14, 27, 58, 111, 223, 424, 817, 1527, 2870, 5279, 9710, 17622, 31877, 57100, 101887, 180406, 318106, 557453, 972796, 1688797, 2920123, 5026410, 8619551, 14722230, 25057499, 42494975, 71832114, 121024876, 203286806, 340435588, 568496753, 946695386
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of partitions of n, when for each k there are p(k) different copies of part k. E.g., let the parts be 1, 2a, 2b, 3a, 3b, 3c, 4a, 4b, 4c, 4d, 4e, ... Then the a(4) = 14 partitions of 4 are: 4 = 4a = 4b = ... = 4e = 3a+1 = 3b+1 = 3c+1 = 2a+2a = 2a+2b = 2b+2b = 2a+1 = 2b+1 = 1+1+1+1.
Equivalently (Cayley), a(n) = number of 2-dimensional partitions of n. E.g., for n = 4 we have:
4 31 3 22 2 211 21 2 2 1111 111 11 11 1
1 2 1 11 1 1 11 1 1
1 1 1
1
Also total number of different species of singularity for conjugate functions with n letters (Sylvester).
According to [Belmans], this sequence gives "[t]he number of Segre symbols for the intersection of two quadrics in a fixed dimension". - Eric M. Schmidt, Sep 02 2017
From Gus Wiseman, Jul 30 2022: (Start)
Also the number of non-isomorphic multiset partitions of weight n with all constant blocks. The strict case is A089259. For example, non-isomorphic representatives of the a(1) = 1 through a(3) = 6 multiset partitions are:
{{1}} {{1,1}} {{1,1,1}}
{{1},{1}} {{1},{1,1}}
{{1},{2}} {{1},{2,2}}
{{1},{1},{1}}
{{1},{2},{2}}
{{1},{2},{3}}
A000688 counts factorizations into prime powers.
A007716 counts non-isomorphic multiset partitions by weight.
A279784 counts twice-partitions of type PPR, factorizations A295935.
Constant partitions are ranked by prime-powers: A000961, A023894, A054685, A246655, A355743.
(End)

Examples

			G.f. = 1 + x + 3*x^2 + 6*x^3 + 15*x^4 + 28*x^5 + 66*x^6 + 122*x^7 + ...
a(3) = 6 because we have (111) = (111) = (11)(1) = (1)(1)(1), (12) = (12) = (1)(2), (3) = (3).
The a(4)=14 multiset partitions whose total sum of parts is 4 are:
((4)),
((13)), ((1)(3)),
((22)), ((2)(2)),
((112)), ((1)(12)), ((2)(11)), ((1)(1)(2)),
((1111)), ((1)(111)), ((11)(11)), ((1)(1)(11)), ((1)(1)(1)(1)). - _Gus Wiseman_, Dec 19 2016
		

References

  • A. Cayley, Recherches sur les matrices dont les termes sont des fonctions linéaires d'une seule indéterminée, J. Reine angew. Math., 50 (1855), 313-317; Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, p. 219.
  • V. A. Liskovets, Counting rooted initially connected directed graphs. Vesci Akad. Nauk. BSSR, ser. fiz.-mat., No 5, 23-32 (1969), MR44 #3927.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. J. Sylvester, An Enumeration of the Contacts of Lines and Surfaces of the Second Order, Phil. Mag. 1 (1851), 119-140. Reprinted in Collected Papers, Vol. 1. See p. 239, where one finds a(n)-2, but with errors.
  • J. J. Sylvester, Note on the 'Enumeration of the Contacts of Lines and Surfaces of the Second Order', Phil. Mag., Vol. VII (1854), pp. 331-334. Reprinted in Collected Papers, Vol. 2, pp. 30-33.

Crossrefs

Related to A001383 via generating function.
The multiplicative version (factorizations) is A050336.
The ordered version (sequences of partitions) is A055887.
Row-sums of A061260.
Main diagonal of A055885.
We have A271619(n) <= a(n) <= A063834(n).
Column k=3 of A290353.
The strict case is A316980.
Cf. A089300.

Programs

  • Haskell
    Following Vladeta Jovovic:
    a001970 n = a001970_list !! (n-1)
    a001970_list = 1 : f 1 [1] where
       f x ys = y : f (x + 1) (y : ys) where
                y = sum (zipWith (*) ys a061259_list) `div` x
    -- Reinhard Zumkeller, Oct 31 2015
    
  • Maple
    with(combstruct); SetSetSetU := [T, {T=Set(S), S=Set(U,card >= 1), U=Set(Z,card >=1)},unlabeled];
    # second Maple program:
    with(numtheory): with(combinat):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          numbpart(d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 19 2016
  • Mathematica
    m = 32; f[x_] = Product[1/(1-x^k)^PartitionsP[k], {k, 1, m}]; CoefficientList[ Series[f[x], {x, 0, m-1}], x] (* Jean-François Alcover, Jul 19 2011, after g.f. *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - numbpart(k) * x^k + x * O(x^n)), n))}; /* Michael Somos, Dec 20 2016 */
    
  • Python
    from sympy.core.cache import cacheit
    from sympy import npartitions, divisors
    @cacheit
    def a(n): return 1 if n == 0 else sum([sum([d*npartitions(d) for d in divisors(j)])*a(n - j) for j in range(1, n + 1)]) / n
    [a(n) for n in range(51)]  # Indranil Ghosh, Aug 19 2017, after Maple code
    # (Sage) # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(0, 1, 1)
    a = EulerTransform(EulerTransform(b))
    print([a(n) for n in range(36)]) # Peter Luschny, Nov 17 2022

Formula

G.f.: Product_{k >= 1} 1/(1-x^k)^p(k), where p(k) = number of partitions of k = A000041. [Cayley]
a(n) = (1/n)*Sum_{k = 1..n} a(n-k)*b(k), n > 1, a(0) = 1, b(k) = Sum_{d|k} d*numbpart(d), where numbpart(d) = number of partitions of d, cf. A061259. - Vladeta Jovovic, Apr 21 2001
Logarithmic derivative yields A061259 (equivalent to above formula from Vladeta Jovovic). - Paul D. Hanna, Sep 05 2012
a(n) = Sum_{k=1..A000041(n)} A001055(A215366(n,k)) = number of factorizations of Heinz numbers of integer partitions of n. - Gus Wiseman, Dec 19 2016
a(n) = |{m>=1 : n = Sum_{k=1..A001222(m)} A056239(A112798(m,k)+1)}| = number of normalized twice-prime-factored multiset partitions (see A275024) whose total sum of parts is n. - Gus Wiseman, Dec 19 2016

Extensions

Additional comments from Valery A. Liskovets
Sylvester references from Barry Cipra, Oct 07 2003

A144150 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where the e.g.f. of column k is 1+g^(k+1)(x) with g = x-> exp(x)-1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 15, 1, 1, 1, 5, 22, 60, 52, 1, 1, 1, 6, 35, 154, 358, 203, 1, 1, 1, 7, 51, 315, 1304, 2471, 877, 1, 1, 1, 8, 70, 561, 3455, 12915, 19302, 4140, 1, 1, 1, 9, 92, 910, 7556, 44590, 146115, 167894, 21147, 1, 1, 1, 10, 117
Offset: 0

Views

Author

Alois P. Heinz, Sep 11 2008

Keywords

Comments

A(n,k) is also the number of (k+1)-level labeled rooted trees with n leaves.
Number of ways to start with set {1,2,...,n} and then repeat k times: partition each set into subsets. - Alois P. Heinz, Aug 14 2015
Equivalently, A(n,k) is the number of length k+1 multichains from bottom to top in the set partition lattice of an n-set. - Geoffrey Critzer, Dec 05 2020

Examples

			Square array begins:
  1,  1,   1,    1,    1,    1,  ...
  1,  1,   1,    1,    1,    1,  ...
  1,  2,   3,    4,    5,    6,  ...
  1,  5,  12,   22,   35,   51,  ...
  1, 15,  60,  154,  315,  561,  ...
  1, 52, 358, 1304, 3455, 7556,  ...
		

Crossrefs

Rows n=0+1, 2-5 give: A000012, A000027, A000326, A005945, A005946.
First lower diagonal gives A139383.
First upper diagonal gives A346802.
Main diagonal gives A261280.

Programs

  • Maple
    g:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1
          else (n-1)! *add(p(k)*b(n-k)/(k-1)!/(n-k)!, k=1..n) fi
        end end:
    A:= (n,k)-> (g@@k)(1)(n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    A:= proc(n, k) option remember; `if`(n=0 or k=0, 1,
          add(binomial(n-1, j-1)*A(j, k-1)*A(n-j, k), j=1..n))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Aug 14 2015
    # third Maple program:
    b:= proc(n, t, m) option remember; `if`(t=0, 1, `if`(n=0,
          b(m, t-1, 0), m*b(n-1, t, m)+b(n-1, t, m+1)))
        end:
    A:= (n, k)-> b(n, k, 0):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    g[k_] := g[k] = Nest[Function[x, E^x - 1], x, k]; a[n_, k_] := SeriesCoefficient[1 + g[k + 1], {x, 0, n}]*n!; Table[a[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2013 *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def A(n, k): return 1 if n==0 or k==0 else sum([binomial(n - 1, j - 1)*A(j, k - 1)*A(n - j, k) for j in range(1, n + 1)])
    for n in range(51): print([A(k, n - k) for k in range(n + 1)]) # Indranil Ghosh, Aug 07 2017

Formula

E.g.f. of column k: 1 + g^(k+1)(x) with g = x-> exp(x)-1.
Column k+1 is Stirling transform of column k.

A306186 Array read by antidiagonals upwards where A(n, k) is the number of non-isomorphic multiset partitions of weight n with k levels of brackets.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 5, 10, 6, 1, 7, 33, 21, 8, 1, 11, 91, 104, 36, 10, 1, 15, 298, 452, 238, 55, 12, 1, 22, 910, 2335, 1430, 455, 78, 14, 1, 30, 3017, 11992, 10179, 3505, 775, 105, 16, 1, 42, 9945, 66810, 74299, 31881, 7297, 1218, 136, 18, 1, 56
Offset: 1

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Examples

			Array begins:
      k=1:  k=2:  k=3:  k=4:  k=5:  k=6:
  n=1:  1     1     1     1     1     1
  n=2:  2     4     6     8    10    12
  n=3:  3    10    21    36    55    78
  n=4:  5    33   104   238   455   775
  n=5:  7    91   452  1430  3505  7297
  n=6: 11   298  2335 10179 31881 80897
Non-isomorphic representatives of the A(3,3) = 21 multiset partitions:
  {{111}}          {{112}}          {{123}}
  {{1}{11}}        {{1}{12}}        {{1}{23}}
  {{1}}{{11}}      {{2}{11}}        {{1}}{{23}}
  {{1}{1}{1}}      {{1}}{{12}}      {{1}{2}{3}}
  {{1}}{{1}{1}}    {{1}{1}{2}}      {{1}}{{2}{3}}
  {{1}}{{1}}{{1}}  {{2}}{{11}}      {{1}}{{2}}{{3}}
                   {{1}}{{1}{2}}
                   {{2}}{{1}{1}}
                   {{1}}{{1}}{{2}}
		

Crossrefs

Columns: A000041 (k=1), A007716 (k=2), A318566 (k=3).
Rows: A000012 (n=1), A005843 (n=2), A014105 (n=3).

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    undats[m_]:=Union[DeleteCases[Cases[m,_?AtomQ,{0,Infinity},Heads->True],List]];
    expnorm[m_]:=If[Length[undats[m]]==0,m,If[undats[m]!=Range[Max@@undats[m]],expnorm[m/.Apply[Rule,Table[{undats[m][[i]],i},{i,Length[undats[m]]}],{1}]],First[Sort[expnorm[m,1]]]]];
    expnorm[m_,aft_]:=If[Length[undats[m]]<=aft,{m},With[{mx=Table[Count[m,i,{0,Infinity},Heads->True],{i,Select[undats[m],#1>=aft&]}]},Union@@(expnorm[#1,aft+1]&)/@Union[Table[MapAt[Sort,m/.{par+aft-1->aft,aft->par+aft-1},Position[m,[__]]],{par,First/@Position[mx,Max[mx]]}]]]];
    strnorm[n_]:=(Flatten[MapIndexed[Table[#2,{#1}]&,#1]]&)/@IntegerPartitions[n];
    kmp[n_,k_]:=kmp[n,k]=If[k==1,strnorm[n],Union[expnorm/@Join@@mps/@kmp[n,k-1]]];
    Table[Length[kmp[sum-k,k]],{sum,1,7},{k,1,sum-1}]

Extensions

a(46)-a(56) from Robert Price, May 11 2021

A096751 Square table, read by antidiagonals, where T(n,k) equals the number of n-dimensional partitions of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 5, 1, 1, 1, 5, 10, 13, 7, 1, 1, 1, 6, 15, 26, 24, 11, 1, 1, 1, 7, 21, 45, 59, 48, 15, 1, 1, 1, 8, 28, 71, 120, 140, 86, 22, 1, 1, 1, 9, 36, 105, 216, 326, 307, 160, 30, 1, 1, 1, 10, 45, 148, 357, 657, 835, 684, 282, 42, 1
Offset: 0

Views

Author

Paul D. Hanna, Jul 07 2004

Keywords

Comments

Main diagonal forms A096752. Antidiagonal sums form A096753. Row with index n lists the row sums of the n-th matrix power of triangle A096651, for n>=0.

Examples

			n-th row lists n-dimensional partitions; table begins with n=0:
  [1,1,1,1,1,1,1,1,1,1,1,1,...],
  [1,1,2,3,5,7,11,15,22,30,42,56,...],
  [1,1,3,6,13,24,48,86,160,282,500,859,...],
  [1,1,4,10,26,59,140,307,684,1464,3122,...],
  [1,1,5,15,45,120,326,835,2145,5345,...],
  [1,1,6,21,71,216,657,1907,5507,15522,...],
  [1,1,7,28,105,357,1197,3857,12300,38430,...],
  [1,1,8,36,148,554,2024,7134,24796,84625,...],
  [1,1,9,45,201,819,3231,12321,46209,170370,...],
  [1,1,10,55,265,1165,4927,20155,80920,...],...
Array begins:
      k=0:  k=1:  k=2:  k=3:  k=4:  k=5:  k=6:  k=7:  k=8:
  n=0:  1     1     1     1     1     1     1     1     1
  n=1:  1     1     2     3     5     7    11    15    22
  n=2:  1     1     3     6    13    24    48    86   160
  n=3:  1     1     4    10    26    59   140   307   684
  n=4:  1     1     5    15    45   120   326   835  2145
  n=5:  1     1     6    21    71   216   657  1907  5507
  n=6:  1     1     7    28   105   357  1197  3857 12300
  n=7:  1     1     8    36   148   554  2024  7134 24796
  n=8:  1     1     9    45   201   819  3231 12321 46209
  n=9:  1     1    10    55   265  1165  4927 20155 80920
		

References

  • G. E. Andrews, The Theory of Partitions, Add.-Wes. 1976, pp. 189-197.

Crossrefs

Rows: A000012 (n=0), A000041 (n=1), A000219 (n=2), A000293 (n=3), A000334 (n=4), A000390 (n=5), A000416 (n=6), A000427 (n=7), A179855 (n=8).
Columns: A008778 (k=4), A008779 (k=5), A042984 (k=6).
Cf. A096806.
Cf. A042984.

Programs

  • Mathematica
    trans[x_]:=If[x=={},{},Transpose[x]];
    levptns[n_,k_]:=If[k==1,IntegerPartitions[n],Join@@Table[Select[Tuples[levptns[#,k-1]&/@y],And@@(GreaterEqual@@@trans[Flatten/@(PadRight[#,ConstantArray[n,k-1]]&/@#)])&],{y,IntegerPartitions[n]}]];
    Table[If[sum==k,1,Length[levptns[k,sum-k]]],{sum,0,10},{k,0,sum}] (* Gus Wiseman, Jan 27 2019 *)

Formula

T(0, n)=T(n, 0)=T(n, 1)=1 for n>=0.
Inverse binomial transforms of the columns is given by triangle A096806.

A007713 Number of 4-level rooted trees with n leaves.

Original entry on oeis.org

1, 1, 4, 10, 30, 75, 206, 518, 1344, 3357, 8429, 20759, 51044, 123973, 299848, 719197, 1716563, 4070800, 9607797, 22555988, 52718749, 122655485, 284207304, 655894527, 1508046031, 3454808143, 7887768997, 17949709753, 40719611684, 92096461012, 207697731344
Offset: 0

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Oct 11 2018: (Start)
Also the number of multiset partitions of multiset partitions of integer partitions of n. For example, the a(1) = 1 through a(4) = 30 multiset partitions are:
  ((1))  ((2))       ((3))            ((4))
         ((11))      ((12))           ((13))
         ((1)(1))    ((111))          ((22))
         ((1))((1))  ((1)(2))         ((112))
                     ((1)(11))        ((1111))
                     ((1))((2))       ((1)(3))
                     ((1))((11))      ((2)(2))
                     ((1)(1)(1))      ((1)(12))
                     ((1))((1)(1))    ((2)(11))
                     ((1))((1))((1))  ((1)(111))
                                      ((11)(11))
                                      ((1))((3))
                                      ((2))((2))
                                      ((1))((12))
                                      ((1)(1)(2))
                                      ((2))((11))
                                      ((1))((111))
                                      ((1)(1)(11))
                                      ((11))((11))
                                      ((1))((1)(2))
                                      ((2))((1)(1))
                                      ((1))((1)(11))
                                      ((1)(1)(1)(1))
                                      ((11))((1)(1))
                                      ((1))((1))((2))
                                      ((1))((1))((11))
                                      ((1))((1)(1)(1))
                                      ((1)(1))((1)(1))
                                      ((1))((1))((1)(1))
                                      ((1))((1))((1))((1))
(End)
		

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: b0:= etr(1): b1:= etr(b0): a:= etr(b1): seq(a(n), n=0..30); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    i[ n_, m_ ] := 1 /; m==1 || n==0; i[ n_, m_ ] := (i[ n, m ]=1/n Sum[ i[ k, m ] Plus @@ ((# i[ #, m-1 ])& /@ Divisors[ n-k ]), {k, 0, n-1} ]) /; n>0 && m>1
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; b0 = etr[Function[1]]; b1 = etr[b0]; a = etr[b1]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)

Formula

Euler transform applied thrice to all-1's sequence.

A323718 Array read by antidiagonals upwards where A(n,k) is the number of k-times partitions of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 5, 6, 4, 1, 1, 1, 7, 15, 10, 5, 1, 1, 1, 11, 28, 34, 15, 6, 1, 1, 1, 15, 66, 80, 65, 21, 7, 1, 1, 1, 22, 122, 254, 185, 111, 28, 8, 1, 1, 1, 30, 266, 604, 739, 371, 175, 36, 9, 1, 1, 1, 42, 503, 1785, 2163, 1785, 672, 260, 45, 10, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 25 2019

Keywords

Comments

A k-times partition of n for k > 1 is a sequence of (k-1)-times partitions, one of each part in an integer partition of n. A 1-times partition of n is just an integer partition of n, and the only 0-times partition of n is the number n itself.

Examples

			Array begins:
       k=0:   k=1:   k=2:   k=3:   k=4:   k=5:
  n=0:  1      1      1      1      1      1
  n=1:  1      1      1      1      1      1
  n=2:  1      2      3      4      5      6
  n=3:  1      3      6     10     15     21
  n=4:  1      5     15     34     65    111
  n=5:  1      7     28     80    185    371
  n=6:  1     11     66    254    739   1785
  n=7:  1     15    122    604   2163   6223
  n=8:  1     22    266   1785   8120  28413
  n=9:  1     30    503   4370  24446 101534
The A(4,2) = 15 twice-partitions:
  (4)  (31)    (22)    (211)      (1111)
       (3)(1)  (2)(2)  (11)(2)    (11)(11)
                       (2)(11)    (111)(1)
                       (21)(1)    (11)(1)(1)
                       (2)(1)(1)  (1)(1)(1)(1)
		

Crossrefs

Columns: A000012 (k=0), A000041 (k=1), A063834 (k=2), A301595 (k=3).
Rows: A000027 (n=2), A000217 (n=3), A006003 (n=4).
Main diagonal gives A306187.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1,
          1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(d-k, k), k=0..d), d=0..14);  # Alois P. Heinz, Jan 25 2019
  • Mathematica
    ptnlev[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Tuples[ptnlev[#,k-1]&/@ptn],{ptn,IntegerPartitions[n]}]];
    Table[Length[ptnlev[sum-k,k]],{sum,0,12},{k,0,sum}]
    (* Second program: *)
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0 || i == 1, 1,
         b[n, i - 1, k] + b[i, i, k - 1]*b[n - i, Min[n - i, i], k]];
    A[n_, k_] := b[n, n, k];
    Table[Table[A[d - k, k], {k, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, May 13 2021, after Alois P. Heinz *)

Formula

Column k is the formal power product transform of column k-1, where the formal power product transform of a sequence q with offset 1 is the sequence whose ordinary generating function is Product_{n >= 1} 1/(1 - q(n) * x^n).
A(n,k) = Sum_{i=0..k} binomial(k,i) * A327639(n,i). - Alois P. Heinz, Sep 20 2019

A007714 Number of 5-level rooted trees with n leaves.

Original entry on oeis.org

1, 1, 5, 15, 55, 170, 571, 1789, 5727, 17836, 55627, 171169, 524879, 1595896, 4829894, 14527981, 43497312, 129588391, 384430264, 1135607519, 3341662498, 9796626673, 28620419254, 83334382425, 241879403752, 699937499318, 2019607806247, 5811320364410, 16677611788799
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=5 of A290353.

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: b[0]:= etr(1): for k from 1 to 2 do b[k]:= etr(b[k-1]) od: a:= etr(b[2]): seq(a(n), n=0..25); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    i[ n_, m_ ] := 1 /; m==1 || n==0; i[ n_, m_ ] := (i[ n, m ]=1/n Sum[ i[ k, m ] Plus @@ ((# i[ #, m-1 ])& /@ Divisors[ n-k ]), {k, 0, n-1} ]) /; n>0 && m>1
    (* Second program: *)
    A[0|1, ] = A[, 1] = 1; A[n_, k_] := A[n, k] = Sum[DivisorSum[j, A[#, k-1] * #&]*A[n-j, k], {j, 1, n}]/n;
    a[n_] := A[n, 5];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 16 2018, after A290353 *)

Formula

Euler transform applied 4 times to all-1's sequence.

Extensions

More terms from Christian G. Bower, Aug 15 1998

A290354 a(n) is the n-th term of the n-th Euler transform of the sequence with g.f. 1+x.

Original entry on oeis.org

1, 1, 2, 6, 30, 170, 1337, 12166, 133476, 1676364, 23970089, 383172262, 6783362586, 131697494825, 2783238819896, 63605879539200, 1563127601683456, 41107799958703376, 1151957989511106438, 34268629198432285436, 1078577860182473404134, 35809701458658690462644
Offset: 0

Views

Author

Alois P. Heinz, Jul 28 2017

Keywords

Comments

a(n) is also the number of unlabeled rooted trees with exactly n leaves, all in level n. a(3) = 6:
: o o o o o o
: | | | / \ / \ /|\
: o o o o o o o o o o
: | / \ /|\ | | ( ) | | | |
: o o o o o o o o o o o o o o
: /|\ ( ) | | | | ( ) | | | | | | |
: o o o o o o o o o o o o o o o o o o

Crossrefs

Main diagonal of A290353.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n<2, 1, `if`(k=0, 0, add(
          add(b(d, k-1)*d, d=divisors(j))*b(n-j, k), j=1..n)/n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, k_]:=b[n, k]=If[n<2, 1, If[k==0, 0, Sum[Sum[b[d, k - 1]*d, {d, Divisors[j]}] b[n - j, k], {j, n}]/n]]; Table[b[n, n], {n, 0, 30}] (* Indranil Ghosh, Jul 30 2017, after Maple code *)

Formula

a(n) = A290353(n,n).
Conjecture: a(n) ~ c * 2^n * n^(n-4/3) / Pi^n, where c = 4.4923... - Vaclav Kotesovec, Aug 14 2017

A330461 Array read by antidiagonals where A(n,k) is the number of multiset partitions with k levels that are strict at all levels and have total sum n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 4, 4, 1, 1, 1, 1, 4, 7, 7, 5, 1, 1, 1, 1, 5, 12, 14, 11, 6, 1, 1, 1, 1, 6, 19, 29, 25, 16, 7, 1, 1, 1, 1, 8, 30, 57, 60, 41, 22, 8, 1, 1, 1, 1, 10, 49, 110, 141, 111, 63, 29, 9, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Dec 18 2019

Keywords

Examples

			Array begins:
       k=0 k=1 k=2 k=3 k=4 k=5 k=6
      -----------------------------
  n=0:  1   1   1   1   1   1   1
  n=1:  1   1   1   1   1   1   1
  n=2:  1   1   1   1   1   1   1
  n=3:  1   2   3   4   5   6   7
  n=4:  1   2   4   7  11  16  22
  n=5:  1   3   7  14  25  41  63
  n=6:  1   4  12  29  60 111 189
For example, the A(5,3) = 14 partitions are:
  {{5}}      {{1}}{{4}}
  {{14}}     {{2}}{{3}}
  {{23}}     {{1}}{{13}}
  {{1}{4}}   {{2}}{{12}}
  {{2}{3}}   {{1}}{{1}{3}}
  {{1}{13}}  {{2}}{{1}{2}}
  {{2}{12}}  {{1}}{{1}{12}}
		

Crossrefs

Columns are A000012 (k = 0), A000009 (k = 1), A050342 (k = 2), A050343 (k = 3), A050344 (k = 4).
The non-strict version is A290353.

Programs

  • Mathematica
    spl[n_,0]:={n};
    spl[n_,k_]:=Select[Join@@Table[Union[Sort/@Tuples[spl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}],UnsameQ@@#&];
    Table[Length[spl[n-k,k]],{n,0,10},{k,0,n}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    M(n, k=n)={my(L=List(), v=vector(n,i,1)); listput(L, concat([1], v)); for(j=1, k, v=WeighT(v); listput(L, concat([1], v))); Mat(Col(L))~}
    { my(A=M(7)); for(i=1, #A, print(A[i,])) } \\ Andrew Howroyd, Dec 31 2019

Formula

Column k is the k-th weigh transform of the all-ones sequence. The weigh transform of a sequence b has generating function Product_{i > 0} (1 + x^i)^b(i).

A290355 The sixth Euler transform of the sequence with g.f. 1+x.

Original entry on oeis.org

1, 1, 6, 21, 91, 336, 1337, 5026, 19193, 71769, 268272, 992676, 3659116, 13400426, 48863017, 177299790, 640713627, 2305930966, 8268556438, 29544196129, 105215495691, 373523546056, 1322096328899, 4666327388034, 16425341129078, 57667752483279, 201967215942032
Offset: 0

Views

Author

Alois P. Heinz, Jul 28 2017

Keywords

Comments

Also the number of 6-level rooted trees with n leaves. All n leaves are in level 6. a(2) = 6:
: o o o o o o
: | | | | | ( )
: o o o o o o o
: | | | | ( ) | |
: o o o o o o o o
: | | | ( ) | | | |
: o o o o o o o o o
: | | ( ) | | | | | |
: o o o o o o o o o o
: | ( ) | | | | | | | |
: o o o o o o o o o o o
: ( ) | | | | | | | | | |
: o o o o o o o o o o o o

Crossrefs

Column k=6 of A290353.
Cf. A007714.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n<2, 1, `if`(k=0, 0, add(
          add(b(d, k-1)*d, d=divisors(j))*b(n-j, k), j=1..n)/n))
        end:
    a:= n-> b(n, 6):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, k_]:=b[n, k]=If[n<2, 1, If[k==0, 0, Sum[Sum[b[d, k - 1]*d, {d, Divisors[j]}] b[n - j, k], {j, n}]/n]]; Table[b[n, 6], {n, 0, 30}] (* Indranil Ghosh, Jul 30 2017, after Maple code *)

Formula

G.f.: Product_{j>0} 1/(1-x^j)^A007714(j).
Showing 1-10 of 21 results. Next