A000293
a(n) = number of solid (i.e., three-dimensional) partitions of n.
Original entry on oeis.org
1, 1, 4, 10, 26, 59, 140, 307, 684, 1464, 3122, 6500, 13426, 27248, 54804, 108802, 214071, 416849, 805124, 1541637, 2930329, 5528733, 10362312, 19295226, 35713454, 65715094, 120256653, 218893580, 396418699, 714399381, 1281403841, 2287986987, 4067428375, 7200210523, 12693890803, 22290727268, 38993410516, 67959010130, 118016656268, 204233654229, 352245710866, 605538866862, 1037668522922, 1772700955975, 3019333854177, 5127694484375, 8683676638832, 14665233966068, 24700752691832, 41495176877972, 69531305679518
Offset: 0
Examples for n=2 and n=3.
a(2) = 4: 2; 11 where the first 1 is at the origin and the second 1 is in the x, y or z direction.
a(3) = 10: 3; 21 where the 2 is at the origin and the 1 is on the x, y or z axis; 111 (a row of 3 ones on the x, y or z axes); and three 1's with one 1 at the origin and the other two 1's on two of the three axes.
From _Gus Wiseman_, Jan 22 2019: (Start)
The a(1) = 1 through a(4) = 26 solid partitions, represented as chains of chains of integer partitions:
((1)) ((2)) ((3)) ((4))
((11)) ((21)) ((22))
((1)(1)) ((111)) ((31))
((1))((1)) ((2)(1)) ((211))
((11)(1)) ((1111))
((2))((1)) ((2)(2))
((1)(1)(1)) ((3)(1))
((11))((1)) ((21)(1))
((1)(1))((1)) ((11)(11))
((1))((1))((1)) ((111)(1))
((2))((2))
((3))((1))
((2)(1)(1))
((21))((1))
((11))((11))
((11)(1)(1))
((111))((1))
((2)(1))((1))
((1)(1)(1)(1))
((11)(1))((1))
((2))((1))((1))
((1)(1))((1)(1))
((1)(1)(1))((1))
((11))((1))((1))
((1)(1))((1))((1))
((1))((1))((1))((1))
(End)
- P. A. MacMahon, Memoir on the theory of partitions of numbers - Part VI, Phil. Trans. Roal Soc., 211 (1912), 345-373.
- P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 332.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Suresh Govindarajan, Table of n, a(n) for n = 0..72
- Alimzhan Amanov and Damir Yeliussizov, MacMahon's statistics on higher-dimensional partitions, arXiv:2009.00592 [math.CO], 2020. Mentions this sequence.
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy], DOI
- Srivatsan Balakrishnan, Suresh Govindarajan and Naveen S. Prabhakar, On the asymptotics of higher-dimensional partitions, arXiv:1105.6231 [cond-mat.stat-mech], 2011.
- P. Bratley and J. K. S. McKay, Algorithm 313: Multi-dimensional partition generator, Comm. ACM, 10 (Issue 10, 1967), p. 666.
- Nicolas Destainville and Suresh Govindarajan, Estimating the asymptotics of solid partitions, arXiv:1406.5605 [cond-mat.stat-mech], 2014; J. Stat. Phys. 158 (2015) 950-967.
- Suresh Govindarajan, Solid Partitions Project Dec 14, 2010.
- D. E. Knuth, A Note on Solid Partitions, Math. Comp. 24, 955-961, 1970.
- P. A. MacMahon, Combinatory analysis.
- Ville Mustonen and R. Rajesh, Numerical Estimation of the Asymptotic Behaviour of Solid Partitions of an Integer, arXiv:cond-mat/0303607 [cond-mat.stat-mech], 2003; J. Phys. A 36 (2003), no. 24, 6651-6659.
- S. P. Naveen, On The Asymptotics of Some Counting Problems in Physics, Thesis, Bachelor of Technology, Department of Physics, Indian Institute of Technology, Madras, May 2011.
- Eric Weisstein's World of Mathematics, Solid Partition
- Wikipedia, Solid partition
- Damir Yeliussizov, Bounds on the number of higher-dimensional partitions, arXiv:2302.04799 [math.CO], 2023.
Cf.
A000041,
A000219 (2-dim),
A000294,
A000334 (4-dim),
A000390 (5-dim),
A002835,
A002836,
A005980,
A037452 (inverse Euler trans.),
A080207,
A007326,
A000416 (6-dim),
A000427 (7-dim),
A179855 (8-dim).
-
planePtns[n_]:=Join@@Table[Select[Tuples[IntegerPartitions/@ptn],And@@(GreaterEqual@@@Transpose[PadRight[#]])&],{ptn,IntegerPartitions[n]}];
solidPtns[n_]:=Join@@Table[Select[Tuples[planePtns/@y],And@@(GreaterEqual@@@Transpose[Join@@@(PadRight[#,{n,n}]&/@#)])&],{y,IntegerPartitions[n]}];
Table[Length[solidPtns[n]],{n,10}] (* Gus Wiseman, Jan 23 2019 *)
More terms from the Mustonen and Rajesh article, May 02 2003
A290353
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the k-th Euler transform of the sequence with g.f. 1+x.
Original entry on oeis.org
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 3, 1, 0, 1, 1, 4, 6, 5, 1, 0, 1, 1, 5, 10, 14, 7, 1, 0, 1, 1, 6, 15, 30, 27, 11, 1, 0, 1, 1, 7, 21, 55, 75, 58, 15, 1, 0, 1, 1, 8, 28, 91, 170, 206, 111, 22, 1, 0, 1, 1, 9, 36, 140, 336, 571, 518, 223, 30, 1, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, ...
0, 1, 3, 6, 10, 15, 21, 28, 36, ...
0, 1, 5, 14, 30, 55, 91, 140, 204, ...
0, 1, 7, 27, 75, 170, 336, 602, 1002, ...
0, 1, 11, 58, 206, 571, 1337, 2772, 5244, ...
0, 1, 15, 111, 518, 1789, 5026, 12166, 26328, ...
0, 1, 22, 223, 1344, 5727, 19193, 54046, 133476, ...
Rows 0+1,2-10 give:
A000012,
A001477,
A000217,
A000330,
A007715,
A290360,
A290361,
A290362,
A290363,
A290364.
-
with(numtheory):
A:= proc(n, k) option remember; `if`(n<2, 1, `if`(k=0, 0, add(
add(A(d, k-1)*d, d=divisors(j))*A(n-j, k), j=1..n)/n))
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
A[n_, k_]:=b[n, k]=If[n<2, 1, If[k==0, 0, Sum[Sum[A[d, k - 1]*d, {d, Divisors[j]}] A[n - j, k], {j, n}]/n]]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}]//Flatten (* Indranil Ghosh, Jul 30 2017, after Maple code *)
A050338
Number of ways of factoring n with 2 levels of parentheses.
Original entry on oeis.org
1, 1, 1, 4, 1, 4, 1, 10, 4, 4, 1, 16, 1, 4, 4, 30, 1, 16, 1, 16, 4, 4, 1, 54, 4, 4, 10, 16, 1, 22, 1, 75, 4, 4, 4, 74, 1, 4, 4, 54, 1, 22, 1, 16, 16, 4, 1, 176, 4, 16, 4, 16, 1, 54, 4, 54, 4, 4, 1, 102, 1, 4, 16, 206, 4, 22, 1, 16, 4, 22, 1, 267, 1, 4, 16, 16, 4, 22, 1, 176, 30, 4, 1, 102
Offset: 1
4 = ((4)) = ((2*2)) = ((2)*(2)) = ((2))*((2)).
A330459
Number of set partitions of set-systems with total sum n.
Original entry on oeis.org
1, 1, 1, 4, 6, 11, 26, 42, 78, 148, 280, 481, 867, 1569, 2742, 4933, 8493, 14857, 25925, 44877, 77022, 132511, 226449, 385396, 657314, 1111115, 1875708, 3157379, 5309439, 8885889, 14861478, 24760339, 41162971, 68328959, 113099231, 186926116, 308230044
Offset: 0
The a(6) = 26 partitions:
((6)) ((15)) ((123)) ((1)(2)(12))
((24)) ((1)(14)) ((1))((2)(12))
((1)(5)) ((1)(23)) ((12))((1)(2))
((2)(4)) ((2)(13)) ((2))((1)(12))
((1))((5)) ((3)(12)) ((1))((2))((12))
((2))((4)) ((1))((14))
((1))((23))
((1)(2)(3))
((2))((13))
((3))((12))
((1))((2)(3))
((2))((1)(3))
((3))((1)(2))
((1))((2))((3))
Cf.
A007713,
A050342,
A050343,
A279375,
A279785,
A283877,
A294617,
A330460,
A330462,
A323787-
A323795,
A330452-
A330459.
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,3],And[UnsameQ@@Join@@#,And@@UnsameQ@@@Join@@#]&]],{n,0,10}]
-
\\ here L is A000009 and BellP is A000110 as series.
L(n)={eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))}
BellP(n)={serlaplace(exp( exp(x + O(x*x^n)) - 1))}
seq(n)={my(c=L(n), b=BellP(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^polcoef(c, k)))); vector(#v, n, my(r=v[n]); sum(k=0, n-1, polcoeff(b,k)*polcoef(r,k)))} \\ Andrew Howroyd, Dec 29 2019
A330452
Number of set partitions of strict multiset partitions of integer partitions of n.
Original entry on oeis.org
1, 1, 2, 7, 13, 34, 81, 175, 403, 890, 1977, 4262, 9356, 19963, 42573, 90865, 191206, 401803, 837898, 1744231, 3607504, 7436628, 15254309, 31185686, 63552725, 128963236, 260933000, 526140540, 1057927323, 2120500885, 4239012067, 8449746787, 16799938614
Offset: 0
The a(4) = 13 partitions:
((4)) ((22)) ((31)) ((211)) ((1111))
((1)(3)) ((1)(21)) ((1)(111))
((1))((3)) ((2)(11)) ((1))((111))
((1))((21))
((2))((11))
Cf.
A001970,
A007713,
A050343,
A063834,
A089259,
A261049,
A271619,
A279375,
A294617,
A318565,
A323787-
A323795,
A330452-
A330459,
A330460.
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,3],UnsameQ@@Join@@#&]],{n,0,10}]
-
\\ here BellP is A000110 as series.
BellP(n)={serlaplace(exp( exp(x + O(x*x^n)) - 1))}
seq(n)={my(b=BellP(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^numbpart(k)))); vector(#v, n, my(r=v[n]); sum(k=0, n-1, polcoeff(b,k)*polcoef(r,k)))} \\ Andrew Howroyd, Dec 29 2019
A330461
Array read by antidiagonals where A(n,k) is the number of multiset partitions with k levels that are strict at all levels and have total sum n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 4, 4, 1, 1, 1, 1, 4, 7, 7, 5, 1, 1, 1, 1, 5, 12, 14, 11, 6, 1, 1, 1, 1, 6, 19, 29, 25, 16, 7, 1, 1, 1, 1, 8, 30, 57, 60, 41, 22, 8, 1, 1, 1, 1, 10, 49, 110, 141, 111, 63, 29, 9, 1, 1, 1
Offset: 0
Array begins:
k=0 k=1 k=2 k=3 k=4 k=5 k=6
-----------------------------
n=0: 1 1 1 1 1 1 1
n=1: 1 1 1 1 1 1 1
n=2: 1 1 1 1 1 1 1
n=3: 1 2 3 4 5 6 7
n=4: 1 2 4 7 11 16 22
n=5: 1 3 7 14 25 41 63
n=6: 1 4 12 29 60 111 189
For example, the A(5,3) = 14 partitions are:
{{5}} {{1}}{{4}}
{{14}} {{2}}{{3}}
{{23}} {{1}}{{13}}
{{1}{4}} {{2}}{{12}}
{{2}{3}} {{1}}{{1}{3}}
{{1}{13}} {{2}}{{1}{2}}
{{2}{12}} {{1}}{{1}{12}}
Cf.
A001970,
A004111,
A007713,
A060016,
A273873,
A279375,
A279785,
A294617,
A306186,
A323718,
A323790,
A330462.
-
spl[n_,0]:={n};
spl[n_,k_]:=Select[Join@@Table[Union[Sort/@Tuples[spl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}],UnsameQ@@#&];
Table[Length[spl[n-k,k]],{n,0,10},{k,0,n}]
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
M(n, k=n)={my(L=List(), v=vector(n,i,1)); listput(L, concat([1], v)); for(j=1, k, v=WeighT(v); listput(L, concat([1], v))); Mat(Col(L))~}
{ my(A=M(7)); for(i=1, #A, print(A[i,])) } \\ Andrew Howroyd, Dec 31 2019
A055885
Euler transform applied twice to partition triangle A008284.
Original entry on oeis.org
1, 1, 3, 1, 3, 6, 1, 6, 9, 14, 1, 6, 18, 23, 27, 1, 9, 27, 54, 57, 58, 1, 9, 39, 87, 140, 131, 111, 1, 12, 51, 150, 259, 353, 295, 223, 1, 12, 69, 210, 470, 702, 832, 637, 424, 1, 15, 84, 314, 749, 1379, 1803, 1917, 1350, 817, 1, 15, 105, 416, 1176, 2352, 3730, 4403, 4245, 2789, 1527
Offset: 1
1;
1, 3;
1, 3, 6;
1, 6, 9, 14;
1, 6, 18, 23, 27;
...
A055886
Euler transform applied three times to partition triangle A008284.
Original entry on oeis.org
1, 1, 4, 1, 4, 10, 1, 8, 16, 30, 1, 8, 32, 54, 75, 1, 12, 48, 128, 176, 206, 1, 12, 70, 210, 443, 535, 518, 1, 16, 92, 362, 842, 1485, 1585, 1344, 1, 16, 124, 516, 1544, 3075, 4676, 4527, 3357, 1, 20, 152, 770, 2500, 6133, 10622, 14336, 12664, 8429, 1, 20, 190, 1030, 3952, 10718, 22524, 34918, 42426, 34631, 20759
Offset: 1
1;
1, 4;
1, 4, 10;
1, 8, 16, 30;
1, 8, 32, 54, 75;
...
A330472
Triangle read by rows where T(n,k) is the number of non-isomorphic k-element multisets of nonempty multisets of nonempty multisets (all finite).
Original entry on oeis.org
1, 0, 1, 0, 4, 2, 0, 10, 8, 3, 0, 33, 48, 18, 5, 0, 91, 204, 118, 32, 7, 0, 298, 959, 743, 266, 58, 11, 0, 910, 4193, 4334, 1927, 519, 94, 15, 0, 3017, 18947, 25305, 13992, 4407, 966, 154, 22, 0, 9945, 84798, 145033, 97947, 36410, 9023, 1679, 236, 30
Offset: 0
Triangle begins:
1
0 1
0 4 2
0 10 8 3
0 33 48 18 5
0 91 204 118 32 7
0 298 959 743 266 58 11
For example, row n = 3 counts the following multiset partitions:
{{111}} {{1}}{{11}} {{1}}{{1}}{{1}}
{{112}} {{1}}{{12}} {{1}}{{1}}{{2}}
{{123}} {{1}}{{23}} {{1}}{{2}}{{3}}
{{1}{11}} {{2}}{{11}}
{{1}{12}} {{1}}{{1}{1}}
{{1}{23}} {{1}}{{1}{2}}
{{2}{11}} {{1}}{{2}{3}}
{{1}{1}{1}} {{2}}{{1}{1}}
{{1}{1}{2}}
{{1}{2}{3}}
Column k = 1 is
A007716 (for n > 0).
Partitions of partitions of partitions are
A007713.
If this is the 3-dimensional version, the 2-dimensional version is
A317533.
-
\\ See links in A339645 for combinatorial species functions.
ColGf(k,n)={my(A=symGroupSeries(n)); OgfSeries(sCartProd(sExp(A), sSubstOp(polcoef(A,k,x)*x^k + O(x*x^n), sExp(A)) ))}
M(n,m=n)={Mat(vector(m+1, k, Col(ColGf(k-1,n), -(n+1))))}
{ my(A=M(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 17 2023
A330473
Regular triangle where T(n,k) is the number of non-isomorphic multiset partitions of k-element multiset partitions of multisets of size n.
Original entry on oeis.org
1, 0, 1, 0, 2, 4, 0, 3, 8, 10, 0, 5, 28, 38, 33, 0, 7, 56, 146, 152, 91, 0, 11, 138, 474, 786, 628, 298, 0, 15, 268, 1388, 3117, 3808, 2486, 910, 0, 22, 570, 3843, 11830, 19147, 18395, 9986, 3017, 0, 30, 1072, 10094, 40438, 87081, 110164, 86388, 39889, 9945
Offset: 0
Triangle begins:
1
0 1
0 2 4
0 3 8 10
0 5 28 38 33
0 7 56 146 152 91
0 11 138 474 786 628 298
For example, row n = 3 counts the following multiset partitions:
{{111}} {{1}{11}} {{1}{1}{1}}
{{112}} {{1}{12}} {{1}{1}{2}}
{{123}} {{1}{23}} {{1}{2}{3}}
{{2}{11}} {{1}}{{1}{1}}
{{1}}{{11}} {{1}}{{1}{2}}
{{1}}{{12}} {{1}}{{2}{3}}
{{1}}{{23}} {{2}}{{1}{1}}
{{2}}{{11}} {{1}}{{1}}{{1}}
{{1}}{{1}}{{2}}
{{1}}{{2}}{{3}}
Column k = 1 is
A000041 (for n > 0).
Partitions of partitions of partitions are
A007713.
The 2-dimensional version is
A317533.
-
\\ See links in A339645 for combinatorial species functions.
ColGf(k, n)={my(A=symGroupSeries(n)); OgfSeries(sCartProd(sExp(A), sSubstOp(polcoef(sExp(A), k, x)*x^k + O(x*x^n), A) ))}
M(n, m=n)={Mat(vector(m+1, k, Col(ColGf(k-1, n), -(n+1))))}
{ my(A=M(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 18 2023
Showing 1-10 of 16 results.
Comments