A050339
Number of factorizations with 2 levels of parentheses indexed by prime signatures. A050338(A025487).
Original entry on oeis.org
1, 1, 4, 4, 10, 16, 30, 54, 22, 75, 74, 176, 102, 206, 267, 535, 399, 518, 950, 526, 1585, 154, 1094, 1446, 1344, 3091, 2252, 4527, 817, 4158, 4879, 3357, 9809, 8811, 12664, 3605, 14653, 3005, 15738, 8429, 10479, 29762, 4777, 16863, 31883, 34631
Offset: 1
A050336
Number of ways of factoring n with one level of parentheses.
Original entry on oeis.org
1, 1, 1, 3, 1, 3, 1, 6, 3, 3, 1, 9, 1, 3, 3, 14, 1, 9, 1, 9, 3, 3, 1, 23, 3, 3, 6, 9, 1, 12, 1, 27, 3, 3, 3, 31, 1, 3, 3, 23, 1, 12, 1, 9, 9, 3, 1, 57, 3, 9, 3, 9, 1, 23, 3, 23, 3, 3, 1, 41, 1, 3, 9, 58, 3, 12, 1, 9, 3, 12, 1, 83, 1, 3, 9, 9, 3, 12, 1, 57, 14, 3, 1, 41, 3, 3, 3, 23, 1, 41, 3, 9
Offset: 1
12 = (12) = (6*2) = (6)*(2) = (4*3) = (4)*(3) = (3*2*2) = (3*2)*(2) = (3)*(2*2) = (3)*(2)*(2).
A318566
Number of non-isomorphic multiset partitions of multiset partitions of multisets of size n.
Original entry on oeis.org
1, 6, 21, 104, 452, 2335, 11992, 66810, 385101, 2336352, 14738380, 96831730, 659809115, 4657075074, 33974259046, 255781455848, 1984239830571, 15839628564349, 129951186405574, 1094486382191624, 9453318070371926, 83654146992936350, 757769011659766015, 7020652591448497490
Offset: 1
Non-isomorphic representatives of the a(3) = 21 multiset partitions of multiset partitions:
{{{1,1,1}}}
{{{1,1,2}}}
{{{1,2,3}}}
{{{1},{1,1}}}
{{{1},{1,2}}}
{{{1},{2,3}}}
{{{2},{1,1}}}
{{{1},{1},{1}}}
{{{1},{1},{2}}}
{{{1},{2},{3}}}
{{{1}},{{1,1}}}
{{{1}},{{1,2}}}
{{{1}},{{2,3}}}
{{{2}},{{1,1}}}
{{{1}},{{1},{1}}}
{{{1}},{{1},{2}}}
{{{1}},{{2},{3}}}
{{{2}},{{1},{1}}}
{{{1}},{{1}},{{1}}}
{{{1}},{{1}},{{2}}}
{{{1}},{{2}},{{3}}}
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
dubnorm[m_]:=First[Union[Table[Map[Sort,m/.Rule@@@Table[{Union[Flatten[m]][[i]],Union[Flatten[m]][[perm[[i]]]]},{i,Length[perm]}],{0,2}],{perm,Permutations[Union[Flatten[m]]]}]]];
Table[Length[Union[dubnorm/@Join@@mps/@Join@@mps/@strnorm[n]]],{n,5}]
-
\\ See links in A339645 for combinatorial species functions.
seq(n)={my(A=sExp(symGroupSeries(n))); NumUnlabeledObjsSeq(sCartProd(A, sExp(A)-1))} \\ Andrew Howroyd, Dec 30 2020
A330665
Number of balanced reduced multisystems of maximal depth whose atoms are the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 3, 1, 5, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 1, 2, 2, 1, 1, 16, 1, 2, 1, 2, 1, 5, 1, 5, 1, 1, 1, 11, 1, 1, 2, 16, 1, 3, 1, 2, 1, 3, 1, 27, 1, 1, 2, 2, 1, 3, 1, 16, 2, 1, 1, 11, 1
Offset: 1
The a(n) multisystems for n = 2, 6, 12, 24, 48:
{1} {1,2} {{1},{1,2}} {{{1}},{{1},{1,2}}} {{{{1}}},{{{1}},{{1},{1,2}}}}
{{2},{1,1}} {{{1,1}},{{1},{2}}} {{{{1}}},{{{1,1}},{{1},{2}}}}
{{{1}},{{2},{1,1}}} {{{{1},{1}}},{{{1}},{{1,2}}}}
{{{1,2}},{{1},{1}}} {{{{1},{1,1}}},{{{1}},{{2}}}}
{{{2}},{{1},{1,1}}} {{{{1,1}}},{{{1}},{{1},{2}}}}
{{{{1}}},{{{1}},{{2},{1,1}}}}
{{{{1}}},{{{1,2}},{{1},{1}}}}
{{{{1},{1}}},{{{2}},{{1,1}}}}
{{{{1},{1,2}}},{{{1}},{{1}}}}
{{{{1,1}}},{{{2}},{{1},{1}}}}
{{{{1}}},{{{2}},{{1},{1,1}}}}
{{{{1},{2}}},{{{1}},{{1,1}}}}
{{{{1,2}}},{{{1}},{{1},{1}}}}
{{{{2}}},{{{1}},{{1},{1,1}}}}
{{{{2}}},{{{1,1}},{{1},{1}}}}
{{{{2},{1,1}}},{{{1}},{{1}}}}
The last nonzero term in row n of
A330667 is a(n).
The non-maximal version is
A318812.
Other labeled versions are
A330675 (strongly normal) and
A330676 (normal).
Cf.
A001055,
A005121,
A005804,
A050336,
A213427,
A292505,
A317144,
A318849,
A320160,
A330474,
A330475,
A330679.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A050340
Number of ways of factoring n with 3 levels of parentheses.
Original entry on oeis.org
1, 1, 1, 5, 1, 5, 1, 15, 5, 5, 1, 25, 1, 5, 5, 55, 1, 25, 1, 25, 5, 5, 1, 105, 5, 5, 15, 25, 1, 35, 1, 170, 5, 5, 5, 145, 1, 5, 5, 105, 1, 35, 1, 25, 25, 5, 1, 425, 5, 25, 5, 25, 1, 105, 5, 105, 5, 5, 1, 205, 1, 5, 25, 571, 5, 35, 1, 25, 5, 35, 1, 660, 1, 5, 25, 25, 5, 35, 1, 425, 55, 5
Offset: 1
4 = (((4))) = (((2*2))) = (((2)*(2))) = (((2))*((2))) = (((2)))*(((2))).
A301598
Number of thrice-factorizations of n.
Original entry on oeis.org
1, 1, 1, 4, 1, 4, 1, 10, 4, 4, 1, 16, 1, 4, 4, 34, 1, 16, 1, 16, 4, 4, 1, 54, 4, 4, 10, 16, 1, 22, 1, 80, 4, 4, 4, 78, 1, 4, 4, 54, 1, 22, 1, 16, 16, 4, 1, 181, 4, 16, 4, 16, 1, 54, 4, 54, 4, 4, 1, 102, 1, 4, 16, 254, 4, 22, 1, 16, 4, 22, 1, 272, 1, 4, 16, 16
Offset: 1
The a(12) = 16 thrice-factorizations:
((2))*((2))*((3)), ((2))*((2)*(3)), ((3))*((2)*(2)), ((2)*(2)*(3)),
((2))*((2*3)), ((2)*(2*3)),
((2))*((6)), ((2)*(6)),
((3))*((2*2)), ((3)*(2*2)),
((3))*((4)), ((3)*(4)),
((2*2*3)),
((2*6)),
((3*4)),
((12)).
Cf.
A001055,
A007716,
A050336,
A050338,
A063834,
A162247,
A269134,
A281113,
A281116,
A301595,
A301598,
A301706.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
twifacs[n_]:=Join@@Table[Tuples[facs/@f],{f,facs[n]}];
thrifacs[n_]:=Join@@Table[Tuples[twifacs/@f],{f,facs[n]}];
Table[Length[thrifacs[n]],{n,15}]
A323719
Array read by antidiagonals upwards where A(n, k) is the number of orderless factorizations of n with k - 1 levels of parentheses.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 3, 1, 4, 1, 6, 1, 1, 1, 1, 2, 6, 1, 5, 1, 7, 1, 1, 1, 1, 2, 3, 10, 1, 6, 1, 8, 1, 1, 1, 1, 1, 3, 4, 15, 1, 7, 1, 9, 1, 1, 1, 1, 4, 1, 4, 5, 21, 1, 8, 1, 10, 1, 1, 1
Offset: 1
Array begins:
k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12
n=1: 1 1 1 1 1 1 1 1 1 1 1 1 1
n=2: 1 1 1 1 1 1 1 1 1 1 1 1 1
n=3: 1 1 1 1 1 1 1 1 1 1 1 1 1
n=4: 1 2 3 4 5 6 7 8 9 10 11 12 13
n=5: 1 1 1 1 1 1 1 1 1 1 1 1 1
n=6: 1 2 3 4 5 6 7 8 9 10 11 12 13
n=7: 1 1 1 1 1 1 1 1 1 1 1 1 1
n=8: 1 3 6 10 15 21 28 36 45 55 66 78 91
n=9: 1 2 3 4 5 6 7 8 9 10 11 12 13
n=10: 1 2 3 4 5 6 7 8 9 10 11 12 13
n=11: 1 1 1 1 1 1 1 1 1 1 1 1 1
n=12: 1 4 9 16 25 36 49 64 81 100 121 144 169
n=13: 1 1 1 1 1 1 1 1 1 1 1 1 1
n=14: 1 2 3 4 5 6 7 8 9 10 11 12 13
n=15: 1 2 3 4 5 6 7 8 9 10 11 12 13
n=16: 1 5 14 30 55 91 140 204 285 385 506 650 819
n=17: 1 1 1 1 1 1 1 1 1 1 1 1 1
n=18: 1 4 9 16 25 36 49 64 81 100 121 144 169
The A(12,3) = 16 orderless factorizations of 12 with 2 levels of parentheses:
((2*2*3)) ((2*6)) ((3*4)) ((12))
((2)*(2*3)) ((2)*(6)) ((3)*(4))
((3)*(2*2)) ((2))*((6)) ((3))*((4))
((2))*((2*3))
((2)*(2)*(3))
((3))*((2*2))
((2))*((2)*(3))
((3))*((2)*(2))
((2))*((2))*((3))
Cf.
A096751,
A141268,
A144150,
A213427,
A255906,
A281113,
A290353,
A292504,
A317145,
A318564,
A318565,
A318812,
A323718.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
lev[n_,k_]:=If[k==0,{n},Join@@Table[Union[Sort/@Tuples[lev[#,k-1]&/@fac]],{fac,facs[n]}]];
Table[Length[lev[sum-k,k]],{sum,12},{k,0,sum-1}]
A324930
Total weight of the multiset of multisets of multisets with MMM number n. Totally additive with a(prime(n)) = A302242(n).
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 2, 0, 2, 1, 0, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 0, 1, 1, 2, 0, 2, 1, 1, 2, 2, 0, 0, 2, 2, 1, 0, 0, 2, 0, 0, 1, 1, 1, 2, 1, 0, 0, 2, 1, 3, 2, 2, 1, 1, 0, 3, 1, 2, 0, 1, 1, 1, 1, 0, 2, 2, 0, 3, 2, 1
Offset: 1
The sequence of all finite multisets of finite multisets of finite multisets of positive integers begins (o is the empty multiset):
1: o
2: (o)
3: ((o))
4: (oo)
5: (((1)))
6: (o(o))
7: ((oo))
8: (ooo)
9: ((o)(o))
10: (o((1)))
11: (((2)))
12: (oo(o))
13: ((o(1)))
14: (o(oo))
15: ((o)((1)))
16: (oooo)
17: (((11)))
18: (o(o)(o))
19: ((ooo))
20: (oo((1)))
Cf.
A000081,
A000720,
A001222,
A050338,
A056239,
A112798,
A301595,
A302242,
A318564,
A318565,
A318566,
A324928.
-
fi[n_]:=If[n==1,{},FactorInteger[n]];
Table[Total[Cases[fi[n],{p_,k_}:>k*Total[Cases[fi[PrimePi[p]],{q_,j_}:>j*PrimeOmega[PrimePi[q]]]]]],{n,60}]
A318816
Regular tetrangle where T(n,k,i) is the number of non-isomorphic multiset partitions of length i of multiset partitions of length k of multisets of size n.
Original entry on oeis.org
1, 2, 2, 2, 3, 4, 4, 3, 4, 3, 5, 14, 14, 9, 20, 9, 5, 14, 9, 5, 7, 28, 28, 33, 80, 33, 16, 68, 52, 16, 7, 28, 33, 16, 7, 11, 69, 69, 104, 266, 104, 74, 356, 282, 74, 29, 199, 253, 118, 29, 11, 69, 104, 74, 29, 11, 15, 134, 134, 294, 800, 294, 263, 1427, 1164
Offset: 1
Tetrangle begins:
1 2 3 5 7
2 2 4 4 14 14 28 28
3 4 3 9 20 9 33 80 33
5 14 9 5 16 68 52 16
7 28 33 16 7
Non-isomorphic representatives of the T(4,3,2) = 20 multiset partitions:
{{{1}},{{1},{1,1}}} {{{1,1}},{{1},{1}}}
{{{1}},{{1},{1,2}}} {{{1,1}},{{1},{2}}}
{{{1}},{{1},{2,2}}} {{{1,1}},{{2},{2}}}
{{{1}},{{1},{2,3}}} {{{1,1}},{{2},{3}}}
{{{1}},{{2},{1,1}}} {{{1,2}},{{1},{1}}}
{{{1}},{{2},{1,2}}} {{{1,2}},{{1},{2}}}
{{{1}},{{2},{1,3}}} {{{1,2}},{{1},{3}}}
{{{1}},{{2},{3,4}}} {{{1,2}},{{3},{4}}}
{{{2}},{{1},{1,1}}} {{{2,3}},{{1},{1}}}
{{{2}},{{1},{1,3}}}
{{{2}},{{3},{1,1}}}
Cf.
A007716,
A050336,
A050338,
A255906,
A269134,
A317533,
A317791,
A318393,
A318399,
A318564,
A318565,
A318566.
Showing 1-9 of 9 results.
Comments