A050341
Number of factorizations with 3 levels of parentheses indexed by prime signatures. A050340(A025487).
Original entry on oeis.org
1, 1, 5, 5, 15, 25, 55, 105, 35, 170, 145, 425, 205, 571, 660, 1611, 1010, 1789, 2938, 1345, 5941, 315, 3437, 4596, 5727, 12047, 7317, 21190, 2130, 16533, 19496, 17836, 47949, 36232, 74020, 11940, 73831, 9841, 78981, 55627, 43590, 183208, 15982
Offset: 1
A050336
Number of ways of factoring n with one level of parentheses.
Original entry on oeis.org
1, 1, 1, 3, 1, 3, 1, 6, 3, 3, 1, 9, 1, 3, 3, 14, 1, 9, 1, 9, 3, 3, 1, 23, 3, 3, 6, 9, 1, 12, 1, 27, 3, 3, 3, 31, 1, 3, 3, 23, 1, 12, 1, 9, 9, 3, 1, 57, 3, 9, 3, 9, 1, 23, 3, 23, 3, 3, 1, 41, 1, 3, 9, 58, 3, 12, 1, 9, 3, 12, 1, 83, 1, 3, 9, 9, 3, 12, 1, 57, 14, 3, 1, 41, 3, 3, 3, 23, 1, 41, 3, 9
Offset: 1
12 = (12) = (6*2) = (6)*(2) = (4*3) = (4)*(3) = (3*2*2) = (3*2)*(2) = (3)*(2*2) = (3)*(2)*(2).
A000334
Number of 4-dimensional partitions of n.
Original entry on oeis.org
1, 5, 15, 45, 120, 326, 835, 2145, 5345, 13220, 32068, 76965, 181975, 425490, 982615, 2245444, 5077090, 11371250, 25235790, 55536870, 121250185, 262769080, 565502405, 1209096875, 2569270050, 5427963902, 11404408525, 23836421895, 49573316740, 102610460240
Offset: 1
From _Gus Wiseman_, Jan 23 2019: (Start)
The a(1) = 1 through a(3) = 15 four-dimensional partitions, represented as chains of chains of chains of integer partitions:
(((1))) (((2))) (((3)))
(((11))) (((21)))
(((1)(1))) (((111)))
(((1))((1))) (((2)(1)))
(((1)))(((1))) (((11)(1)))
(((2))((1)))
(((1)(1)(1)))
(((11))((1)))
(((2)))(((1)))
(((1)(1))((1)))
(((11)))(((1)))
(((1))((1))((1)))
(((1)(1)))(((1)))
(((1))((1)))(((1)))
(((1)))(((1)))(((1)))
(End)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Suresh Govindarajan, Table of n, a(n) for n = 1..40
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy], DOI
- S. Balakrishnan, S. Govindarajan and N. S. Prabhakar, On the asymptotics of higher-dimensional partitions, arXiv:1105.6231 [cond-mat.stat-mech], 2011.
- S. P. Naveen, On The Asymptotics of Some Counting Problems in Physics, Thesis, Bachelor of Technology, Department of Physics, Indian Institute of Technology, Madras, May 2011.
-
trans[x_]:=If[x=={},{},Transpose[x]];
levptns[n_,k_]:=If[k==1,IntegerPartitions[n],Join@@Table[Select[Tuples[levptns[#,k-1]&/@y],And@@(GreaterEqual@@@trans[Flatten/@(PadRight[#,ConstantArray[n,k-1]]&/@#)])&],{y,IntegerPartitions[n]}]];
Table[Length[levptns[n,4]],{n,8}] (* Gus Wiseman, Jan 24 2019 *)
A330665
Number of balanced reduced multisystems of maximal depth whose atoms are the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 3, 1, 5, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 1, 2, 2, 1, 1, 16, 1, 2, 1, 2, 1, 5, 1, 5, 1, 1, 1, 11, 1, 1, 2, 16, 1, 3, 1, 2, 1, 3, 1, 27, 1, 1, 2, 2, 1, 3, 1, 16, 2, 1, 1, 11, 1
Offset: 1
The a(n) multisystems for n = 2, 6, 12, 24, 48:
{1} {1,2} {{1},{1,2}} {{{1}},{{1},{1,2}}} {{{{1}}},{{{1}},{{1},{1,2}}}}
{{2},{1,1}} {{{1,1}},{{1},{2}}} {{{{1}}},{{{1,1}},{{1},{2}}}}
{{{1}},{{2},{1,1}}} {{{{1},{1}}},{{{1}},{{1,2}}}}
{{{1,2}},{{1},{1}}} {{{{1},{1,1}}},{{{1}},{{2}}}}
{{{2}},{{1},{1,1}}} {{{{1,1}}},{{{1}},{{1},{2}}}}
{{{{1}}},{{{1}},{{2},{1,1}}}}
{{{{1}}},{{{1,2}},{{1},{1}}}}
{{{{1},{1}}},{{{2}},{{1,1}}}}
{{{{1},{1,2}}},{{{1}},{{1}}}}
{{{{1,1}}},{{{2}},{{1},{1}}}}
{{{{1}}},{{{2}},{{1},{1,1}}}}
{{{{1},{2}}},{{{1}},{{1,1}}}}
{{{{1,2}}},{{{1}},{{1},{1}}}}
{{{{2}}},{{{1}},{{1},{1,1}}}}
{{{{2}}},{{{1,1}},{{1},{1}}}}
{{{{2},{1,1}}},{{{1}},{{1}}}}
The last nonzero term in row n of
A330667 is a(n).
The non-maximal version is
A318812.
Other labeled versions are
A330675 (strongly normal) and
A330676 (normal).
Cf.
A001055,
A005121,
A005804,
A050336,
A213427,
A292505,
A317144,
A318849,
A320160,
A330474,
A330475,
A330679.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A323719
Array read by antidiagonals upwards where A(n, k) is the number of orderless factorizations of n with k - 1 levels of parentheses.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 3, 1, 4, 1, 6, 1, 1, 1, 1, 2, 6, 1, 5, 1, 7, 1, 1, 1, 1, 2, 3, 10, 1, 6, 1, 8, 1, 1, 1, 1, 1, 3, 4, 15, 1, 7, 1, 9, 1, 1, 1, 1, 4, 1, 4, 5, 21, 1, 8, 1, 10, 1, 1, 1
Offset: 1
Array begins:
k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12
n=1: 1 1 1 1 1 1 1 1 1 1 1 1 1
n=2: 1 1 1 1 1 1 1 1 1 1 1 1 1
n=3: 1 1 1 1 1 1 1 1 1 1 1 1 1
n=4: 1 2 3 4 5 6 7 8 9 10 11 12 13
n=5: 1 1 1 1 1 1 1 1 1 1 1 1 1
n=6: 1 2 3 4 5 6 7 8 9 10 11 12 13
n=7: 1 1 1 1 1 1 1 1 1 1 1 1 1
n=8: 1 3 6 10 15 21 28 36 45 55 66 78 91
n=9: 1 2 3 4 5 6 7 8 9 10 11 12 13
n=10: 1 2 3 4 5 6 7 8 9 10 11 12 13
n=11: 1 1 1 1 1 1 1 1 1 1 1 1 1
n=12: 1 4 9 16 25 36 49 64 81 100 121 144 169
n=13: 1 1 1 1 1 1 1 1 1 1 1 1 1
n=14: 1 2 3 4 5 6 7 8 9 10 11 12 13
n=15: 1 2 3 4 5 6 7 8 9 10 11 12 13
n=16: 1 5 14 30 55 91 140 204 285 385 506 650 819
n=17: 1 1 1 1 1 1 1 1 1 1 1 1 1
n=18: 1 4 9 16 25 36 49 64 81 100 121 144 169
The A(12,3) = 16 orderless factorizations of 12 with 2 levels of parentheses:
((2*2*3)) ((2*6)) ((3*4)) ((12))
((2)*(2*3)) ((2)*(6)) ((3)*(4))
((3)*(2*2)) ((2))*((6)) ((3))*((4))
((2))*((2*3))
((2)*(2)*(3))
((3))*((2*2))
((2))*((2)*(3))
((3))*((2)*(2))
((2))*((2))*((3))
Cf.
A096751,
A141268,
A144150,
A213427,
A255906,
A281113,
A290353,
A292504,
A317145,
A318564,
A318565,
A318812,
A323718.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
lev[n_,k_]:=If[k==0,{n},Join@@Table[Union[Sort/@Tuples[lev[#,k-1]&/@fac]],{fac,facs[n]}]];
Table[Length[lev[sum-k,k]],{sum,12},{k,0,sum-1}]
Showing 1-5 of 5 results.
Comments