cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A055884 Euler transform of partition triangle A008284.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 4, 4, 5, 1, 4, 8, 7, 7, 1, 6, 12, 16, 12, 11, 1, 6, 17, 25, 28, 19, 15, 1, 8, 22, 43, 49, 48, 30, 22, 1, 8, 30, 58, 87, 88, 77, 45, 30, 1, 10, 36, 87, 134, 167, 151, 122, 67, 42, 1, 10, 45, 113, 207, 270, 296, 247, 185, 97, 56, 1, 12, 54, 155, 295, 448, 510, 507, 394, 278, 139, 77
Offset: 1

Views

Author

Christian G. Bower, Jun 09 2000

Keywords

Comments

Number of multiset partitions of length-k integer partitions of n. - Gus Wiseman, Nov 09 2018

Examples

			From _Gus Wiseman_, Nov 09 2018: (Start)
Triangle begins:
   1
   1   2
   1   2   3
   1   4   4   5
   1   4   8   7   7
   1   6  12  16  12  11
   1   6  17  25  28  19  15
   1   8  22  43  49  48  30  22
   1   8  30  58  87  88  77  45  30
   ...
The fifth row {1, 4, 8, 7, 7} counts the following multiset partitions:
  {{5}}   {{1,4}}     {{1,1,3}}       {{1,1,1,2}}         {{1,1,1,1,1}}
          {{2,3}}     {{1,2,2}}      {{1},{1,1,2}}       {{1},{1,1,1,1}}
         {{1},{4}}   {{1},{1,3}}     {{1,1},{1,2}}       {{1,1},{1,1,1}}
         {{2},{3}}   {{1},{2,2}}     {{2},{1,1,1}}      {{1},{1},{1,1,1}}
                     {{2},{1,2}}    {{1},{1},{1,2}}     {{1},{1,1},{1,1}}
                     {{3},{1,1}}    {{1},{2},{1,1}}    {{1},{1},{1},{1,1}}
                    {{1},{1},{3}}  {{1},{1},{1},{2}}  {{1},{1},{1},{1},{1}}
                    {{1},{2},{2}}
(End)
		

Crossrefs

Row sums give A001970.
Main diagonal gives A000041.
Columns k=1-2 give: A057427, A052928.
T(n+2,n+1) gives A000070.
T(2n,n) gives A360468.

Programs

  • Maple
    h:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i)))))
        end:
    g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
          g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i)+k-1, k), k=0..j))))
        end:
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
        end:
    T:= (n, k)-> coeff(b(n$2), x, k):
    seq(seq(T(n,k), k=1..n), n=1..12);  # Alois P. Heinz, Feb 17 2023
  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Join@@mps/@IntegerPartitions[n,{k}]],{n,5},{k,n}] (* Gus Wiseman, Nov 09 2018 *)

A007713 Number of 4-level rooted trees with n leaves.

Original entry on oeis.org

1, 1, 4, 10, 30, 75, 206, 518, 1344, 3357, 8429, 20759, 51044, 123973, 299848, 719197, 1716563, 4070800, 9607797, 22555988, 52718749, 122655485, 284207304, 655894527, 1508046031, 3454808143, 7887768997, 17949709753, 40719611684, 92096461012, 207697731344
Offset: 0

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Oct 11 2018: (Start)
Also the number of multiset partitions of multiset partitions of integer partitions of n. For example, the a(1) = 1 through a(4) = 30 multiset partitions are:
  ((1))  ((2))       ((3))            ((4))
         ((11))      ((12))           ((13))
         ((1)(1))    ((111))          ((22))
         ((1))((1))  ((1)(2))         ((112))
                     ((1)(11))        ((1111))
                     ((1))((2))       ((1)(3))
                     ((1))((11))      ((2)(2))
                     ((1)(1)(1))      ((1)(12))
                     ((1))((1)(1))    ((2)(11))
                     ((1))((1))((1))  ((1)(111))
                                      ((11)(11))
                                      ((1))((3))
                                      ((2))((2))
                                      ((1))((12))
                                      ((1)(1)(2))
                                      ((2))((11))
                                      ((1))((111))
                                      ((1)(1)(11))
                                      ((11))((11))
                                      ((1))((1)(2))
                                      ((2))((1)(1))
                                      ((1))((1)(11))
                                      ((1)(1)(1)(1))
                                      ((11))((1)(1))
                                      ((1))((1))((2))
                                      ((1))((1))((11))
                                      ((1))((1)(1)(1))
                                      ((1)(1))((1)(1))
                                      ((1))((1))((1)(1))
                                      ((1))((1))((1))((1))
(End)
		

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: b0:= etr(1): b1:= etr(b0): a:= etr(b1): seq(a(n), n=0..30); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    i[ n_, m_ ] := 1 /; m==1 || n==0; i[ n_, m_ ] := (i[ n, m ]=1/n Sum[ i[ k, m ] Plus @@ ((# i[ #, m-1 ])& /@ Divisors[ n-k ]), {k, 0, n-1} ]) /; n>0 && m>1
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; b0 = etr[Function[1]]; b1 = etr[b0]; a = etr[b1]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)

Formula

Euler transform applied thrice to all-1's sequence.

A055885 Euler transform applied twice to partition triangle A008284.

Original entry on oeis.org

1, 1, 3, 1, 3, 6, 1, 6, 9, 14, 1, 6, 18, 23, 27, 1, 9, 27, 54, 57, 58, 1, 9, 39, 87, 140, 131, 111, 1, 12, 51, 150, 259, 353, 295, 223, 1, 12, 69, 210, 470, 702, 832, 637, 424, 1, 15, 84, 314, 749, 1379, 1803, 1917, 1350, 817, 1, 15, 105, 416, 1176, 2352, 3730, 4403, 4245, 2789, 1527
Offset: 1

Views

Author

Christian G. Bower, Jun 09 2000

Keywords

Examples

			  1;
  1, 3;
  1, 3,  6;
  1, 6,  9, 14;
  1, 6, 18, 23, 27;
  ...
		

Crossrefs

Row sums give A007713.
Main diagonal gives A001970.
Showing 1-3 of 3 results.