A007729 6th binary partition function.
1, 2, 4, 5, 8, 10, 13, 14, 18, 21, 26, 28, 33, 36, 40, 41, 46, 50, 57, 60, 68, 73, 80, 82, 89, 94, 102, 105, 112, 116, 121, 122, 128, 133, 142, 146, 157, 164, 174, 177, 188, 196, 209, 214, 226, 233, 242, 244, 253, 260, 272, 277, 290, 298, 309, 312, 322, 329, 340, 344
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Michael J. Collins and David Wilson, Equivalence of OEIS A007729 and A174868, arXiv:1812.11174 [math.CO], 2018.
- B. Reznick, Some binary partition functions, in "Analytic number theory" (Conf. in honor P. T. Bateman, Allerton Park, IL, 1989), 451-477, Progr. Math., 85, Birkhäuser Boston, Boston, MA, 1990.
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; `if`(n<2, n, `if`(irem(n, 2)=0, b(n/2), b((n-1)/2) +b((n+1)/2))) end: a:= proc(n) option remember; b(n+1) +`if`(n>0, a(n-1), 0) end: seq(a(n), n=0..70); # Alois P. Heinz, Jun 21 2012
-
Mathematica
b[n_] := b[n] = If[n<2, n, If[Mod[n, 2] == 0, b[n/2], b[(n-1)/2]+b[(n+1)/2]]]; a[n_] := a[n] = b[n+1] + If[n>0, a[n-1], 0]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
-
Python
from itertools import accumulate, count, islice from functools import reduce def A007729_gen(): # generator of terms return accumulate(sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(n)[-1:2:-1],(1,0))) for n in count(1)) A007729_list = list(islice(A007729_gen(),30)) # Chai Wah Wu, May 07 2023
Formula
G.f.: (r(x) * r(x^2) * r(x^4) * r(x^8) * ...) where r(x) = (1 + 2x + 2x^2 + x^3 + 0 + 0 + 0 + ...). - Gary W. Adamson, Sep 01 2016
a(2k) = 2*a(k-1) + a(k); a(2k+1) = 2*a(k) + a(k-1). - Michael J. Collins, Dec 25 2018
Extensions
More terms from Vladeta Jovovic, May 06 2004
Comments