A007757 Dwork-Kontsevich sequence evaluated at 2*n.
1, 2, 36, 144, 1440, 17280, 241920, 29030400, 1567641600, 156764160000, 217275125760000, 1738201006080000, 45193226158080000, 3796230997278720000, 113886929918361600000, 1822190878693785600000, 22489479824838701875200000, 28336744579296764362752000000, 1076796294013277045784576000000, 1679802218660712191423938560000000
Offset: 1
Keywords
Examples
G.f. = x + 2*x^2 + 36*x^3 + 144*x^4 + 1440*x^5 + 17280*x^6 + 241920*x^7 + ...
Links
- Christian Krattenthaler and Tanguy Rivoal, On the integrality of the Taylor coefficients of mirror maps, arXiv:0709.1432 [math.NT], 2007-2009.
- Christian Krattenthaler and Tanguy Rivoal, On the integrality of the Taylor coefficients of mirror maps, II, Communications in Number Theory and Physics, 3(3) (2009), 555-591. [Part II appeared before Part I.]
- Christian Krattenthaler and Tanguy Rivoal, On the integrality of the Taylor coefficients of mirror maps, Duke Math. J. 151(2) (2010), 175-218.
Programs
-
Mathematica
a[n0_] := Module[{A, MM = 2, n = 2n0, c1, c2}, A = Exp[Sum[x^j (n j)!/ (j!^n) Sum[1/k, {k, j+1, j n}], {j, 0, MM}]/Sum[x^j (n j)!/(j!^n), {j, 0, MM}]]; c1 = SeriesCoefficient[A, {x, 0, 1}]; c2 = SeriesCoefficient[A, {x, 0, 2}]; GCD[c1, (c1 + c1^2)/2 - c2]]; Array[a, 20] (* Jean-François Alcover, Dec 17 2018, from PARI *)
-
PARI
{a(n) = my(A, MM=2, c1, c2); if(n<1, 0, n*=2; A = x * O(x^MM); A = exp( sum(j=0, MM, x^j * (n*j)! / (j!^n) * sum(k=j+1, j*n, 1/k), A) / sum(j=0, MM, x^j * (n*j)! / (j!^n), A)); c1 = polcoeff(A, 1); c2 = polcoeff(A, 2); gcd(c1, (c1 + c1^2)/2 - c2))}; /* Michael Somos, Nov 16 2006 */
Extensions
Definition in comment line, PARI code and terms of sequence corrected by Christian Krattenthaler (christian.krattenthaler(AT)univie.ac.at), Sep 30 2007
a(8) corrected by Sean A. Irvine, Jan 22 2018
Comments