cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007773 For any circular arrangement of 0..n-1, let S = sum of squares of every sum of two contiguous numbers; then a(n) = # of distinct values of S.

Original entry on oeis.org

1, 1, 1, 3, 8, 21, 43, 69, 102, 145, 197, 261, 336, 425, 527, 645, 778, 929, 1097, 1285, 1492, 1721, 1971, 2245, 2542, 2865, 3213, 3589, 3992, 4425, 4887, 5381, 5906, 6465, 7057, 7685, 8348, 9049, 9787, 10565, 11382, 12241, 13141, 14085, 15072, 16105
Offset: 1

Views

Author

K. S. Brown (kevin2003(AT)delphi.com), Hugh L. Montgomery

Keywords

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( x*(1-2*x +4*x^3+3*x^5-10*x^7+2*x^8+8*x^9-4*x^10)/((1-x)^3*(1-x^2)) )); // G. C. Greubel, Mar 15 2019
    
  • Mathematica
    Drop[CoefficientList[Series[x*(1-2*x+4*x^3+3*x^5-10*x^7+2*x^8+8*x^9 -4*x^10)/((1-x)^3*(1-x^2)), {x, 0, 60}], x], 1] (* G. C. Greubel, Mar 15 2019 *)
  • PARI
    a(n)=polcoeff(x*(1-2*x+4*x^3+3*x^5-10*x^7+2*x^8+8*x^9-4*x^10+O(x^n))/(1-x)^3/(1-x^2),n)
    
  • PARI
    A007773(n)=if(n>5,(n^3-max(16*n,116)+31)\6,n>3,5*n-17,1) \\ M. F. Hasler, Mar 15 2019
    
  • Sage
    a=(x*(1-2*x+4*x^3+3*x^5-10*x^7+2*x^8+8*x^9-4*x^10)/((1-x)^3*(1-x^2))).series(x, 60).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Mar 15 2019

Formula

For n >= 7, a(n) = (n^3-16*n+27)/6 (n odd); (n^3-16*n+30)/6 (n even).
G.f.: x*(1-2*x+4*x^3+3*x^5-10*x^7+2*x^8+8*x^9-4*x^10)/((1-x)^3*(1-x^2)). - Michael Somos, May 03 2002
a(2n) = A322594(n-4), n>=4. - R. J. Mathar, Mar 18 2019

Extensions

More terms from David W. Wilson, Oct 27 2000