cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007799 Irregular triangle read by rows: Whitney numbers of the second kind a(n,k), n >= 1, k >= 0, for the star poset.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 9, 5, 1, 4, 12, 30, 44, 26, 3, 1, 5, 20, 70, 170, 250, 169, 35, 1, 6, 30, 135, 460, 1110, 1689, 1254, 340, 15, 1, 7, 42, 231, 1015, 3430, 8379, 13083, 10408, 3409, 315, 1, 8, 56, 364, 1960, 8540, 28994, 71512, 114064, 96116, 36260
Offset: 1

Views

Author

Frederick J. Portier [fportier(AT)msmary.edu]

Keywords

Comments

Row sums are factorials. - N. J. A. Sloane, Mar 05 2017
a(n,k) is the number of permutations of 1..n that can be reached from the identity permutation in k steps using only the n-1 transpositions (1 2) (1 3) .. (1 n). The maximum value of k is given by floor(3*(n-1)/2). - Andrew Howroyd, May 13 2017

Examples

			Triangle begins:
  1;
  1,    1;
  1,    2,    2,    1;
  1,    3,    6,    9,    5;
  1,    4,   12,   30,   44,   26,    3;
  1,    5,   20,   70,  170,  250,  169,   35;
  1,    6,   30,  135,  460, 1110, 1689, 1254,  340,   15;
  ...
		

Crossrefs

Cf. A192837.

Programs

  • Mathematica
    nmax = 9; a[n_, 0] = 1; a[n_, 1] = n - 1; a[n_, 2] = (n - 1) (n - 2); a[n_, k_ /; k >= 2] := a[n, k] = (n - 1) a[n - 1, k - 1] + Sum[j a[j, k-3], {j, 1, n - 2}]; Flatten[Table[a[n, k], {n, 1, nmax}, {k, 0, Floor[3 (n - 1)/2]}]] (* Jean-François Alcover, Nov 10 2011, after Ke Qiu *)
    Table[Sum[Binomial[n - 1, k] Binomial[n - 1 - k, t] StirlingS1[k + 1, i - k + 1 - 2 t] (-1)^(i + 2 - t), {k, 0, Min[n - 1, i + 1]}, {t, Max[0, Ceiling[(i - 2 k)/2]], Min[n - 1 - k, Floor[(i + 1 - k)/2]]}], {n, 9}, {i, 0, Floor[3 (n - 1)/2]}] // Flatten (* Eric W. Weisstein, Dec 09 2017 *)

Formula

a(n,0) = 1, a(n,1) = n-1, a(n,2) = (n-1)(n-2), a(n,k) = a(n-1, k) + (n-1)a(n-1, k-1) - (n-2)a(n-2, k-1) + (n-2)a(n-2, k-3) for k >= 3.
a(n,0) = 1, a(n,1) = n - 1, a(n,2) = (n-1)(n-2); a(n,i) = (n-1)a(n-1, i-1) + Sum_{j=1 .. n-2} j a(j, i-3). For 0 <= i <= ceiling(3(n-1)/2) and n >= 1 we have Sum_{k=0 .. i+1} (-1)^k binomial(i+1, k) a(n+i+1-k, i) = 0. For example, for i=2, we have a(n+3, 2) - 3a(n+2, 2) + 3a(n+1, 2) - a(n, 2) = 0. - Ke Qiu (kqiu(AT)brocku.ca), Feb 06 2005

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 22 2000