cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A302408 Number of n step self-avoiding walks on 3 X infinity grid starting from (0,0).

Original entry on oeis.org

1, 3, 7, 18, 40, 86, 170, 350, 688, 1394, 2702, 5338, 10278, 20078, 38578, 74820, 143496, 276890, 530626, 1020774, 1955400, 3754560, 7190520, 13790666, 26407852, 50612412, 96911566, 185660272, 355485362, 680860212, 1303623528, 2496462996
Offset: 0

Views

Author

Sean A. Irvine, Apr 07 2018

Keywords

Crossrefs

Cf. A007825 (starting from (0,1)), A038577, A001411.

A022444 Number of self-avoiding closed walks (from (0,0) to (0,0)) of length 2n in strip {-1, 0, 1} X Z.

Original entry on oeis.org

1, 0, 8, 16, 44, 112, 252, 564, 1276, 2840, 6220, 13532, 29292, 63024, 134876, 287428, 610268, 1291336, 2724204, 5731500, 12029260, 25191008, 52646908, 109823636, 228707004, 475533432, 987305612, 2047088764, 4239132716
Offset: 0

Views

Author

Jacques Labelle (labelle.jacques(AT)uqam.ca)

Keywords

References

  • J. Labelle, Self-avoiding walks and polyominoes in strips, Bull. ICA, 23 (1998), 88-98.

Crossrefs

Formula

G.f.: (-12*x^7+16*x^6-36*x^5+37*x^4-24*x^3+14*x^2-4*x+1) / ((1+x^2)^2*(1-2*x)^2) (conjectured).

Extensions

a(16)-a(28) and title improved by Sean A. Irvine, May 15 2019

A107069 Number of self-avoiding walks of length n on an infinite triangular prism starting at the origin.

Original entry on oeis.org

1, 4, 12, 34, 90, 222, 542, 1302, 3058, 7186, 16714, 38670, 89358, 205710, 472906, 1086138, 2491666, 5713318, 13094950, 30003190, 68731010, 157423986, 360530346, 825626942, 1890615518, 4329196974, 9912914314, 22698017834, 51972012258, 119000208806
Offset: 0

Views

Author

Jonathan Vos Post, May 10 2005

Keywords

Comments

The discrete space in which the walking happens is a triangular prism infinite in both directions along the x-axis. One vertex is the root, the origin. The basis is the set of single-step vectors, which we abbreviate as l (left), r (right), c (one step "clockwise" around the triangle) and c- (one step counterclockwise, more properly denoted c^-1).

Examples

			a(0) = 1, as there is one self-avoiding walk of length 0, namely the null-walk (the walk whose steps are the null set).
a(1) = 4 because (using the terminology in the Comment), the 4 possible 1-step walks are W_1 = {l,r,c,c-}.
a(2) = 12 because the set of legal 2-step walks are {l^2, lc, lc-, r^2, rc, rc-, c^2, cl, cr, c^-2, c-l, c-r}.
a(3) = 34 because we have every W_2 concatenated with {l,r,c,c-} except for those with immediate violations (lr etc.) and those two which go in a triangle {c^3, c^-3}; hence a(3) = 3*a(2) - 2 = 3*12 - 2 = 36 - 2 = 34.
		

Crossrefs

Programs

  • Python
    w = [[[(0, 0)]]]
    for n in range(1, 15):
        nw = []
        for walk in w[-1]:
            (x, t) = walk[-1]
            nss = [(x-1, t), (x+1, t), (x, (t+1)%3), (x, (t-1)%3)]
            for ns in nss:
                if ns not in walk:
                    nw.append(walk[:] + [ns])
        w.append(nw)
    print([len(x) for x in w])
    # Andrey Zabolotskiy, Sep 19 2019

Extensions

a(4) and a(5) corrected, a(6)-a(14) added by Andrey Zabolotskiy, Sep 19 2019
More terms from Andrey Zabolotskiy, Dec 04 2023

A336988 Table read by antidiagonals: T(h,n) is the number of n-step self avoiding walks on a 2D square grid confined to an infinite strip of height 2h where the walk starts at coordinate (0,h).

Original entry on oeis.org

4, 10, 4, 22, 12, 4, 42, 34, 12, 4, 90, 82, 36, 12, 4, 182, 194, 98, 36, 12, 4, 382, 438, 262, 100, 36, 12, 4, 742, 1034, 650, 282, 100, 36, 12, 4, 1486, 2362, 1610, 754, 284, 100, 36, 12, 4, 2866, 5558, 3870, 1994, 778, 284, 100, 36, 12, 4
Offset: 1

Views

Author

Scott R. Shannon, Aug 10 2020

Keywords

Examples

			T(1,3) = 22. The five 3-step walks taking a first step to the right and upward or a step upward and then to the right are:
.
      +  +--+     +--+  +--+--+  +--+
      |     |     |     |        |  |
X--+--+  X--+  X--+     X        X  +
.
The same steps can be taken to the right then down, to the left then down, and to the left then up. There is also the two straight walks right and left. This give a total number of walks of 4*5+2 = 22.
.
The table begins:
.
4 10 22  42  90 182  382  742  1486  2866   5646  10878  21198   40694   78758...
4 12 34  82 194 438 1034 2362  5558 12662  29366  66330 151566  339514  767798...
4 12 36  98 262 650 1610 3870  9490 22830  55826 134242 326934  784770 1901246...
4 12 36 100 282 754 1994 5046 12786 31746  79566 196858 491506 1214262 3024890...
4 12 36 100 284 778 2142 5682 14986 38462  98762 249894 635290 1599394 4048366...
4 12 36 100 284 780 2170 5882 15970 42286 111554 288962 748414 1916762 4921146...
4 12 36 100 284 780 2172 5914 16230 43730 117810 311894 823682 2146886 5593690...
4 12 36 100 284 780 2172 5916 16266 44058 119842 321630 862674 2284682 6040622...
4 12 36 100 284 780 2172 5916 16268 44098 120246 324394 877210 2348022 6281498...
4 12 36 100 284 780 2172 5916 16268 44100 120290 324882 880866 2368982 6380418...
4 12 36 100 284 780 2172 5916 16268 44100 120292 324930 881446 2373706 6409762...
4 12 36 100 284 780 2172 5916 16268 44100 120292 324932 881498 2374386 6415746...
4 12 36 100 284 780 2172 5916 16268 44100 120292 324932 881500 2374442 6416534...
4 12 36 100 284 780 2172 5916 16268 44100 120292 324932 881500 2374444 6416594...
4 12 36 100 284 780 2172 5916 16268 44100 120292 324932 881500 2374444 6416596...
		

Crossrefs

Cf. A336769 (start at origin), A001411 (h->infinity), A007825 (h=1), A116903, A038373, A336863, A336818.

Formula

For n <= h, T(h,n) = A001411(n).
Row 1 = T(1,n) = A007825(n).
Showing 1-4 of 4 results.