cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A361355 Triangle read by rows: T(n,k) is the number of simple series-parallel matroids on [n] with rank k, 1 <= k <= n.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 15, 1, 0, 0, 0, 0, 75, 1, 0, 0, 0, 0, 735, 280, 1, 0, 0, 0, 0, 0, 9345, 938, 1, 0, 0, 0, 0, 0, 76545, 77805, 2989, 1, 0, 0, 0, 0, 0, 0, 1865745, 536725, 9285, 1, 0, 0, 0, 0, 0, 0, 13835745, 27754650, 3334870, 28446, 1, 0
Offset: 1

Views

Author

Andrew Howroyd, Mar 09 2023

Keywords

Examples

			Triangle begins:
  1;
  0, 0;
  0, 1,  0;
  0, 0,  1,   0;
  0, 0, 15,   1,     0;
  0, 0,  0,  75,     1,     0;
  0, 0,  0, 735,   280,     1,    0;
  0, 0,  0,   0,  9345,   938,    1, 0;
  0, 0,  0,   0, 76545, 77805, 2989, 1, 0;
  ...
		

Crossrefs

Row sums are A007834.

Programs

  • PARI
    \\ B gives A359985 as e.g.f.
    B(n)= {exp(x*(1+y) + y*intformal(serreverse(log(1 + x*y + O(x^n))/y + log(1 + x + O(x^n)) - x)))}
    T(n) = {my(v=Vec(serlaplace(log(subst(B(n), x, log(1 + x + O(x*x^n)))/(1 + x))))); vector(#v, n, Vecrev(v[n]/y, n))}
    { my(A=T(9)); for(i=1, #A, print(A[i])) }

Formula

E.g.f.: A(x,y) = log(1 + B(x,y)) where B(x,y) is the e.g.f. of A361353.
E.g.f.: A(x,y) = log(B(log(1 + x), y)/(1 + x)) where B(x,y) is the e.g.f. of A359985.
T(2*n+1, n+1) = A034941(n).
T(2*n, n+1) = A361282(n).

A361354 Number of simple quasi series-parallel matroids on [n].

Original entry on oeis.org

1, 1, 2, 6, 32, 218, 2060, 23054, 314242, 4897410, 87427276, 1741312444, 38482278928, 931618115860, 24554678866736, 699328394272236, 21410158708401980, 701011980397033052, 24445424273647475096, 904440666571331841992, 35386719095200164370912, 1459756349974815778252152
Offset: 1

Views

Author

Andrew Howroyd, Mar 09 2023

Keywords

Crossrefs

Row sums of A361353.

Programs

  • PARI
    seq(n) = Vec(serlaplace( -1 + subst(exp(2*x + intformal(-x + 2*serreverse(1 + 2*x - exp(x + O(x^n))))), x, log(1 + x + O(x*x^n)))/(1 + x) ))

Formula

E.g.f.: B(1 + log(x))/(1 + x) - 1 where B(x) is the e.g.f. of A359986.
E.g.f.: exp(B(x)) where B(x) is the e.g.f. of A007834.
Showing 1-2 of 2 results.