cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A007834 Number of point labeled reduced 5-free two-graphs with n nodes.

Original entry on oeis.org

1, 0, 1, 1, 16, 76, 1016, 10284, 157340, 2411756, 44953712, 899824256, 20283419872, 495216726096, 13202082981712, 378896535199888, 11690436112988224, 385173160930360192, 13509981115738946816, 502374681770910293568, 19746124320077115154112, 817908018939079281840320
Offset: 1

Views

Author

Keywords

Crossrefs

Row sums are A361355.

Programs

  • Mathematica
    CoefficientList[Series[-2*LambertW[-1/2*E^(-1/2)*(1+x)^(1/2)]/(1+x), {x, 0, 15}], x]* Range[0, 15]! (* Vaclav Kotesovec, Sep 30 2013 *)
  • PARI
    \\ B(x) gives the e.g.f. of A359986.
    B(n)={exp(2*x + intformal(serreverse(log(1 + x + O(x^n)) + log(1 + x + O(x^n)) - x)))}
    seq(n)={Vec(serlaplace(log(subst(B(n), x, log(1 + x + O(x*x^n)))/(1 + x))))} \\ Andrew Howroyd, Oct 15 2024

Formula

E.g.f.: -2*LambertW(-1/2*exp(-1/2)*(1+x)^(1/2))/(1+x). - Vladeta Jovovic, Aug 21 2006
a(n) ~ sqrt(2)*sqrt(4-exp(1)) * n^(n-1) / (8*exp(n-1)*(4*exp(-1)-1)^n). - Vaclav Kotesovec, Sep 30 2013
E.g.f.: log(B(log(1 + x))/(1 + x)), where B(x) is the e.g.f. of A359986. - Andrew Howroyd, Oct 15 2024

Extensions

a(20) onwards from Andrew Howroyd, Oct 15 2024

A361353 Triangle read by rows: T(n,k) is the number of simple quasi series-parallel matroids on [n] with rank k, 1 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 5, 1, 0, 0, 15, 16, 1, 0, 0, 0, 175, 42, 1, 0, 0, 0, 735, 1225, 99, 1, 0, 0, 0, 0, 16065, 6769, 219, 1, 0, 0, 0, 0, 76545, 204400, 32830, 466, 1, 0, 0, 0, 0, 0, 2747745, 2001230, 147466, 968, 1, 0, 0, 0, 0, 0, 13835745, 56143395, 16813720, 632434, 1981, 1
Offset: 1

Views

Author

Andrew Howroyd, Mar 09 2023

Keywords

Comments

See Table 2 in the Ferroni/Larson reference.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,  1;
  0, 0,  5,   1;
  0, 0, 15,  16,     1;
  0, 0,  0, 175,    42,      1;
  0, 0,  0, 735,  1225,     99,     1;
  0, 0,  0,   0, 16065,   6769,   219,   1;
  0, 0,  0,   0, 76545, 204400, 32830, 466, 1;
  ...
		

Crossrefs

Row sums are A361354.

Programs

  • PARI
    \\ B gives A359985 as e.g.f.
    B(n)= {exp(x*(1+y) + y*intformal(serreverse(log(1 + x*y + O(x^n))/y + log(1 + x + O(x^n)) - x)))}
    T(n) = {[Vecrev(p/y) | p<-Vec(serlaplace(subst(B(n), x, log(1 + x + O(x*x^n)))/(1 + x) - 1))]}
    { my(A=T(9)); for(i=1, #A, print(A[i])) }

Formula

E.g.f.: A(x,y) = B(log(1 + x), y)/(1 + x) - 1 where B(x,y) is the e.g.f. of A359985.

A361282 Number of rank n+1 simple connected series-parallel matroids on [2n].

Original entry on oeis.org

0, 1, 75, 9345, 1865745, 554479695, 231052877055, 128938132548225, 92986310399407425, 84250567868935042575, 93744545254140599193375, 125717783386887888296925825, 200041202339679732328342670625, 372688996228146502285257581079375, 803768398459351988653830600415029375
Offset: 1

Views

Author

Matt Larson, Mar 06 2023

Keywords

Examples

			For n=2 the a(2) = 1 rank 3 simple connected series-parallel matroid on [4] is the uniform matroid of rank 3.
		

Crossrefs

Programs

Extensions

Terms a(10)-a(15) from Andrew Howroyd, Mar 09 2023
Showing 1-3 of 3 results.