A007900 Coordination sequence for D_4 lattice.
1, 24, 144, 456, 1056, 2040, 3504, 5544, 8256, 11736, 16080, 21384, 27744, 35256, 44016, 54120, 65664, 78744, 93456, 109896, 128160, 148344, 170544, 194856, 221376, 250200, 281424, 315144, 351456
Offset: 0
References
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
Links
- M. Baake and U. Grimm, Coordination sequences for root lattices and related graphs, arXiv:cond-mat/9706122, Zeit. f. Kristallographie, 212 (1997), 253-256.
- R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy]
- Index entries for sequences related to D_4 lattice
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
Crossrefs
A row of array A103903.
Programs
-
Maple
if n=0 then 1 else 8*n*(2*n^2+1); fi;
Formula
G.f.: (1+54*x^2+20*x+20*x^3+x^4)/(1-x)^4 = 1+24*x*(x+1)^2/(x-1)^4.
G.f. for coordination sequence of D_n lattice: (Sum(binomial(2*n, 2*i)*z^i, i=0..n)-2*n*z*(1+z)^(n-2))/(1-z)^n.