cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A103903 Square array T(n,k) read by antidiagonals: coordination sequence for lattice D_n.

Original entry on oeis.org

1, 1, 24, 1, 40, 144, 1, 60, 370, 456, 1, 84, 792, 1640, 1056, 1, 112, 1498, 4724, 4930, 2040, 1, 144, 2592, 11620, 18096, 11752, 3504, 1, 180, 4194, 25424, 55650, 52716, 24050, 5544, 1, 220, 6440, 50832, 149568, 195972, 127816, 44200, 8256, 1, 264
Offset: 4

Views

Author

Ralf Stephan, Feb 21 2005

Keywords

Examples

			1,24,144,456,1056,2040,3504,5544,8256,11736,
1,40,370,1640,4930,11752,24050,44200,75010,119720,
1,60,792,4724,18096,52716,127816,271908,524640,938652,
1,84,1498,11620,55650,195972,559258,1371316,2999682,6003956,
1,112,2592,25424,149568,629808,2100832,5910288,14610560,32641008,
1,144,4194,50832,361602,1801872,6976866,22413456,62407170,155242640,
		

Crossrefs

Programs

  • Mathematica
    nmin = 4; nmax = 13; f[x_, n_] := ((1/2)*((-1+Sqrt[x])^(2n)+(1+Sqrt[x])^(2n))*(1-x)^n) / (-1+x)^(2n)-(2n*x*(1+x)^(n-2)) / (1-x)^n; t = Table[ CoefficientList[ Series[ f[x, n], {x, 0, nmax-nmin} ], x], {n, nmin, nmax} ]; Flatten[ Table[ t[[n-k+1, k]], {n, 1, nmax-nmin+1}, {k, 1, n} ] ] (* Jean-François Alcover, Jan 24 2012, after g.f. *)
  • PARI
    T(n,k)={polcoeff(sum(i=0, n, (binomial(2*n, 2*i) - 2*n*binomial(n-2, i-1))*x^i)/(1-x)^n + O(x*x^k), k)} \\ Andrew Howroyd, Jul 03 2018

Formula

G.f. of n-th row: (Sum_{i=0..n} (binomial(2*n, 2*i) - 2*n*binomial(n-2, i-1))*x^i)/(1-x)^n.

A289156 Largest area of triangles with integer sides and area = n times perimeter.

Original entry on oeis.org

60, 1224, 8436, 34320, 103020, 254040, 546084, 1060896, 1907100, 3224040, 5185620, 8004144, 11934156, 17276280, 24381060, 33652800, 45553404, 60606216, 79399860, 102592080, 130913580, 165171864, 206255076, 255135840, 312875100, 380625960, 459637524, 551258736
Offset: 1

Views

Author

Zhining Yang, Jun 26 2017

Keywords

Examples

			For n = 4, a(4) = 34320 means for the largest triangles (a,b,c) = (66,4225,4289), the area is 34320 which is 4 times the perimeter 8580.
		

Crossrefs

Programs

  • Mathematica
    Table[4 n (2 n^2 + 1) (4 n^2 + 1), {n, 27}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {60, 1224, 8436, 34320, 103020, 254040}, 27] (* or *) Rest@ CoefficientList[Series[12 x (5 + 72 x + 166 x^2 + 72 x^3 + 5 x^4)/(1 - x)^6, {x, 0, 27}], x] (* Michael De Vlieger, Jul 03 2017 *)
  • PARI
    Vec(12*x*(5 + 72*x + 166*x^2 + 72*x^3 + 5*x^4)/(1 - x)^6 + O(x^30)) \\ Colin Barker, Jun 28 2017

Formula

From Colin Barker, Jun 28 2017: (Start)
G.f.: 12*x*(5 + 72*x + 166*x^2 + 72*x^3 + 5*x^4)/(1 - x)^6.
a(n) = 4*n*(2*n^2 + 1)*(4*n^2 + 1).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6. (End)
a(n) = A120573(2*n). - Ray Chandler, Jul 27 2017
From Elmo R. Oliveira, Sep 01 2025: (Start)
E.g.f.: 4*exp(x)*x*(15 + 138*x + 206*x^2 + 80*x^3 + 8*x^4).
a(n) = 12*A005900(n)*A053755(n) = A053755(n)*A007900(n)/2. (End)

A365356 Number of free face-connected 4-dimensional polyhypercubes with n cells.

Original entry on oeis.org

1, 1, 5, 36, 407, 7579
Offset: 1

Views

Author

Pontus von Brömssen, Sep 03 2023

Keywords

Crossrefs

141st row of A366766.
Cf. A007900 (coordination sequence of the underlying graph), A038119, A068870.
See A365366 for a table of similar sequences.

A323282 Coordination sequence for Leech lattice.

Original entry on oeis.org

1, 196560, 39462040800
Offset: 0

Views

Author

N. J. A. Sloane, Jan 12 2019

Keywords

Comments

Coordination sequence for graph G having a vertex for each point of the Leech lattice, with each vertex joined by an edge to its 196560 nearest neighbors.
No formula or recurrence is presently known (see page xxxvi of the sphere packing book).

Examples

			The graph G has degree 196560, so a(1)=196560.
Let L(i) denote the set of vectors in the Leech lattice having norm 2i, and let c(i) = |L(i)| = A008408(i). The first few sets L(i) are described on page 181 of the ATLAS and in Table 4.13 of the sphere packing book.
The vertices at edge-distance 2 from the vertex 0^24 consist of the sets L(3), L(4), L(5), L(6), and the doubles of L(2), so a(2) = c(2)+c(3)+...+c(6) = 39462040800.
To prove this, note that the group Aut(G) = Co_0 acts transitively on each of the sets L(2), L(3), L(4), L(5), and L(7) (cf. A323273). It is easy to find one representative from each set L(3), L(4), L(5) among the sums of pairs of minimal vectors. There are two orbits on L(6) and again it is easy to find a representative from each orbit, for example
[3, 3, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
and
[2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2].
Among the sums of pairs of minimal vectors there are no vectors from L(7), so there is no contribution from c(7).
Finally, the only possibility for a vector of norm 16 is the double of a minimal vector, and there are c(2) = 196560 of these, all in one obit under the group.
So a(2) = c(3)+c(4)+c(5)+c(6)+c(2) = 39462040800.
		

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. 181.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, 3rd. ed., 1993; see page xxxvi and Tables 4.13 and 4.14.

Crossrefs

A107506 Coordination sequence for D_11 lattice.

Original entry on oeis.org

1, 220, 9482, 166188, 1660450, 11260876, 57581898, 237782204, 831240322, 2543995388, 6986455498, 17539148684, 40829208354, 89125931884, 184069213834, 362272019868, 683489419778, 1242224123932, 2183844052874, 3726523300588, 6190586013986, 10037135290380
Offset: 0

Views

Author

N. J. A. Sloane, May 28 2005

Keywords

Crossrefs

Cf. A007900.

Formula

G.f.: -(x +1)*(x^10 +208*x^9 +6909*x^8 +66912*x^7 +251010*x^6 +392864*x^5 +251010*x^4 +66912*x^3 +6909*x^2 +208*x +1) / (x -1)^11. [Colin Barker, Nov 20 2012]
Showing 1-5 of 5 results.