cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A103881 Square array T(n,k) (n >= 1, k >= 0) read by antidiagonals: coordination sequence for root lattice A_n.

Original entry on oeis.org

1, 1, 2, 1, 6, 2, 1, 12, 12, 2, 1, 20, 42, 18, 2, 1, 30, 110, 92, 24, 2, 1, 42, 240, 340, 162, 30, 2, 1, 56, 462, 1010, 780, 252, 36, 2, 1, 72, 812, 2562, 2970, 1500, 362, 42, 2, 1, 90, 1332, 5768, 9492, 7002, 2570, 492, 48, 2, 1, 110, 2070, 11832, 26474, 27174, 14240, 4060, 642, 54, 2, 1, 132, 3080, 22530, 66222, 91112, 65226, 26070, 6040, 812, 60, 2
Offset: 1

Views

Author

Ralf Stephan, Feb 20 2005

Keywords

Comments

T(n,k) is the number of integer sequences of length n+1 with sum zero and sum of absolute values 2k. - R. H. Hardin, Feb 23 2009

Examples

			Array begins:
  1,   2,     2,      2,       2,        2,         2,          2, ... A040000;
  1,   6,    12,     18,      24,       30,        36,         42, ... A008458;
  1,  12,    42,     92,     162,      252,       362,        492, ... A005901;
  1,  20,   110,    340,     780,     1500,      2570,       4060, ... A008383;
  1,  30,   240,   1010,    2970,     7002,     14240,      26070, ... A008385;
  1,  42,   462,   2562,    9492,    27174,     65226,     137886, ... A008387;
  1,  56,   812,   5768,   26474,    91112,    256508,     623576, ... A008389;
  1,  72,  1332,  11832,   66222,   271224,    889716,    2476296, ... A008391;
  1,  90,  2070,  22530,  151560,   731502,   2777370,    8809110, ... A008393;
  1, 110,  3080,  40370,  322190,  1815506,   7925720,   28512110, ... A008395;
  1, 132,  4422,  68772,  643632,  4197468,  20934474,   85014204, ... A035837;
  1, 156,  6162, 112268, 1219374,  9129276,  51697802,  235895244, ... A035838;
  1, 182,  8372, 176722, 2206932, 18827718, 120353324,  614266354, ... A035839;
  1, 210, 11130, 269570, 3838590, 37060506, 265953170, 1511679210, ... A035840;
  ...
Antidiagonals:
  1;
  1,  2;
  1,  6,    2;
  1, 12,   12,    2;
  1, 20,   42,   18,    2;
  1, 30,  110,   92,   24,    2;
  1, 42,  240,  340,  162,   30,    2;
  1, 56,  462, 1010,  780,  252,   36,   2;
  1, 72,  812, 2562, 2970, 1500,  362,  42,  2;
  1, 90, 1332, 5768, 9492, 7002, 2570, 492, 48,  2;
		

Crossrefs

Programs

  • GAP
    T:=Flat(List([1..12],n->Concatenation([1],List([1..n-1],k->Sum([1..n],i->Binomial(n-k+1,i)*Binomial(k-1,i-1)*Binomial(n-i,k)))))); # Muniru A Asiru, Oct 14 2018
    
  • Magma
    A103881:= func< n,k | k le 0 select 1 else (&+[Binomial(n-k+1, j)*Binomial(k-1, j-1)*Binomial(n-j, k): j in [1..n-k]]) >;
    [A103881(n,k): k in [0..n-1], n in [1..15]]; // G. C. Greubel, Oct 16 2018; May 24 2023
    
  • Maple
    T:=proc(n,k) option remember; local i;
    if k=0 then 1 else
    add( binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k),i=1..n); fi;
    end:
    g:=n->[seq(T(n-i,i),i=0..n-1)]:
    for n from 1 to 14 do lprint(op(g(n))); od:
  • Mathematica
    T[n_, k_]:= (n+1)*(n+k-1)!*HypergeometricPFQ[{1-k,1-n,-n}, {2,-n-k+1}, 1]/(k!*(n-1)!); T[, 0]=1; Flatten[Table[T[n-k, k], {n,12}, {k,0,n-1}]] (* _Jean-François Alcover, Dec 27 2012 *)
  • PARI
    A103881(n,k) = if(k==0, 1, sum(j=1, n-k, binomial(n-k+1, j)*binomial(k-1, j-1)*binomial(n-j, k)));
    for(n=1, 15, for(k=0, n-1, print1(A103881(n,k), ", "))) \\ G. C. Greubel, Oct 16 2018; May 24 2023
    
  • SageMath
    def A103881(n,k): return 1 if k==0 else (n-k+1)*binomial(n-1,k)*hypergeometric([k-n,1+k-n,1-k], [2,1-n], 1).simplify()
    flatten([[A103881(n,k) for k in range(n)] for n in range(1,16)]) # G. C. Greubel, May 24 2023

Formula

T(n,k) = Sum_{i=1..n} C(n+1, i)*C(k-1, i-1)*C(n-i+k, k), T(n,0)=1.
G.f. of n-th row: (Sum_{i=0..n} C(n, i)^2*x^i)/(1-x)^n.
From G. C. Greubel, May 24 2023: (Start)
T(n, k) = Sum_{j=0..n} binomial(n,j)^2 * binomial(n+k-j-1, n-1) (array).
T(n, k) = (n+1)*binomial(n+k-1,k)*hypergeometric([-n,1-n,1-k], [2,1-n-k], 1), with T(n, k) = 1 (array).
t(n, k) = (n-k+1)*binomial(n-1,k)*hypergeometric([k-n,1+k-n,1-k], [2,1-n], 1), with t(n, 0) = 1 (antidiagonals).
Sum_{k=0..n-1} t(n, k) = A047085(n). (End)
From Peter Bala, Jul 09 2023: (Start)
T(n,k) = [x^k] Legendre_P(n, (1 + x)/(1 - x)).
(n+1)*T(n+1,k) = (n+1)*T(n+1,k-1) + (2*n+1)*(T(n,k) + T(n,k-1)) - n*(T(n-1,k) - T(n-1,k-1)). (End)

Extensions

Corrected by N. J. A. Sloane, Dec 15 2012, at the suggestion of Manuel Blum

A007900 Coordination sequence for D_4 lattice.

Original entry on oeis.org

1, 24, 144, 456, 1056, 2040, 3504, 5544, 8256, 11736, 16080, 21384, 27744, 35256, 44016, 54120, 65664, 78744, 93456, 109896, 128160, 148344, 170544, 194856, 221376, 250200, 281424, 315144, 351456
Offset: 0

Views

Author

Keywords

References

  • M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.

Crossrefs

A row of array A103903.

Programs

  • Maple
    if n=0 then 1 else 8*n*(2*n^2+1); fi;

Formula

G.f.: (1+54*x^2+20*x+20*x^3+x^4)/(1-x)^4 = 1+24*x*(x+1)^2/(x-1)^4.
G.f. for coordination sequence of D_n lattice: (Sum(binomial(2*n, 2*i)*z^i, i=0..n)-2*n*z*(1+z)^(n-2))/(1-z)^n.

A008355 Coordination sequence for D_5 lattice.

Original entry on oeis.org

1, 40, 370, 1640, 4930, 11752, 24050, 44200, 75010, 119720, 182002, 265960, 376130, 517480, 695410, 915752, 1184770, 1509160, 1896050, 2353000, 2888002, 3509480, 4226290, 5047720, 5983490, 7043752
Offset: 0

Views

Author

Keywords

Crossrefs

A row of array A103903.

Programs

  • Magma
    [1]cat[2*(9*n^2+1)*(n^2+1): n in [1..30]]; // Vincenzo Librandi, Apr 16 2012
  • Maple
    2*(9*n^2+1)*(n^2+1);
  • Mathematica
    CoefficientList[Series[(1+x)*(1+34*x+146*x^2+34*x^3+x^4)/(1-x)^5,{x,0,30}],x] (* Vincenzo Librandi, Apr 16 2012 *)

Formula

a(n) = 2*(9*n^2+1)*(n^2+1) (see MAPLE line).
G.f.: (1+x)*(1+34*x+146*x^2+34*x^3+x^4)/(1-x)^5. [Colin Barker, Apr 14 2012]

A008357 Coordination sequence for D_6 lattice.

Original entry on oeis.org

1, 60, 792, 4724, 18096, 52716, 127816, 271908, 524640, 938652, 1581432, 2537172, 3908624, 5818956, 8413608, 11862148, 16360128, 22130940, 29427672, 38534964, 49770864, 63488684, 80078856
Offset: 0

Views

Author

Keywords

Crossrefs

A row of array A103903.

Programs

  • Maple
    4/15*n*(37+130*n^2+58*n^4);

Formula

G.f.: (x^6+54*x^5+447*x^4+852*x^3+447*x^2+54*x+1)/(x-1)^6. [Colin Barker, Sep 26 2012]

A008359 Coordination sequence for D_7 lattice.

Original entry on oeis.org

1, 84, 1498, 11620, 55650, 195972, 559258, 1371316, 2999682, 6003956, 11193882, 19695172, 33023074, 53163684, 82663002, 124723732, 183309826, 263258772, 370401626, 511690788, 695335522
Offset: 0

Views

Author

Keywords

Crossrefs

A row of array A103903.

Programs

  • Maple
    484/45*n^6+392/9*n^4+1246/45*n^2+2;

Formula

G.f.: (x+1)*(x^6 + 76*x^5 + 855*x^4 + 2008*x^3 + 855*x^2 + 76*x + 1)/(1-x)^7. [Colin Barker, Sep 26 2012; corrected by Georg Fischer, May 19 2019]

A008361 Coordination sequence for D_8 lattice.

Original entry on oeis.org

1, 112, 2592, 25424, 149568, 629808, 2100832, 5910288, 14610560, 32641008, 67232416, 129565392, 236214464, 410909616, 686647008, 1108180624, 1734926592, 2644311920, 3935599392, 5734220368
Offset: 0

Views

Author

Keywords

Crossrefs

A row of array A103903.

Programs

  • Maple
    1984/315*n^7+1888/45*n^5+2368/45*n^3+1168/105*n;
  • Mathematica
    Join[{1},Table[16/315*n*(219+1036*n^2+826*n^4+124*n^6),{n,30}]] (* or *) Join[{1},LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{112,2592,25424,149568,629808,2100832,5910288,14610560},30]] (* Harvey P. Dale, Feb 21 2012 *)
  • PARI
    a(n) = 16/315*n*(219 + 1036*n^2 + 826*n^4 + 124*n^6) \\ Charles R Greathouse IV, Feb 10 2017

Formula

a(n) = 16/315*n*(219 + 1036*n^2 + 826*n^4 + 124*n^6). - Harvey P. Dale, Feb 21 2012
a(0)=1, a(1)=112, a(2)=2592, a(3)=25424, a(4)=149568, a(5)=629808, a(6)=2100832, a(7)=5910288, a(8)=14610560, a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8). - Harvey P. Dale, Feb 21 2012
G.f.: (x^8 + 104*x^7 + 1724*x^6 + 7768*x^5 + 12550*x^4 + 7768*x^3 + 1724*x^2 + 104*x + 1)/(x - 1)^8. - Colin Barker, Sep 26 2012

A008376 Coordination sequence for D_9 lattice.

Original entry on oeis.org

1, 144, 4194, 50832, 361602, 1801872, 6976866, 22413456, 62407170, 155242640, 352624482, 743284368, 1471858818, 2764261008, 4960898658, 8559218832, 14267189250, 23069454480, 36308034146, 55779559056, 83851169922, 123597332112, 178959948642, 254934282384, 357783327234
Offset: 0

Views

Author

Keywords

Crossrefs

A row of array A103903.

Programs

  • Maple
    1006/315*n^8+488/15*n^6+1084/15*n^4+10712/315*n^2+2;
  • Mathematica
    CoefficientList[Series[-(x + 1) (x^8 + 134 x^7 + 2800 x^6 + 15386 x^5 + 27742 x^4 + 15386 x^3 + 2800 x^2 + 134 x + 1)/(x - 1)^9, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 15 2013 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,144,4194,50832,361602,1801872,6976866,22413456,62407170,155242640},30] (* Harvey P. Dale, Jun 05 2023 *)

Formula

G.f.: -(x +1)*(x^8 +134*x^7 +2800*x^6 +15386*x^5 +27742*x^4 +15386*x^3 +2800*x^2 +134*x +1) / (x -1)^9. [Colin Barker, Nov 18 2012]

Extensions

More terms from Vincenzo Librandi, Oct 15 2013

A008378 Coordination sequence for D_10 lattice.

Original entry on oeis.org

1, 180, 6440, 94620, 802640, 4687108, 20924280, 76392940, 238753440, 659632980, 1649142216, 3796582460, 8156356080, 16522765220, 31822575640, 58659933324, 104054451520, 178420035060, 296839277160, 480696051420, 759737228432, 1174643272260, 1780196817080
Offset: 0

Views

Author

Keywords

Crossrefs

A row of array A103903.
Cf. A008379 (partial sums).

Programs

  • Maple
    1352/945*n^9+1328/63*n^7+3416/45*n^5+13136/189*n^3+1268/105*n;
  • Mathematica
    CoefficientList[Series[(x^10 + 170 x^9 + 4685 x^8 + 38200 x^7 + 124850 x^6 + 183356 x^5 + 124850 x^4 + 38200 x^3 + 4685 x^2 + 170 x + 1)/(x - 1)^10, {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2013 *)
    LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,180,6440,94620,802640,4687108,20924280,76392940,238753440,659632980,1649142216},40] (* Harvey P. Dale, Jun 22 2017 *)

Formula

G.f.: (x^10 +170*x^9 +4685*x^8 +38200*x^7 +124850*x^6 +183356*x^5 +124850*x^4 +38200*x^3 +4685*x^2 +170*x +1) / (x -1)^10. [Colin Barker, Nov 19 2012]

Extensions

More terms from Vincenzo Librandi, Oct 15 2013
Showing 1-8 of 8 results.