cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A156554 The number of integer sequences of length d = 2n+1 such that the sum of the terms is 0 and the sum of the absolute values of the terms is d-1.

Original entry on oeis.org

1, 6, 110, 2562, 66222, 1815506, 51697802, 1511679210, 45076309166, 1364497268946, 41800229045610, 1292986222651646, 40317756506959050, 1265712901796074842, 39965073938276694002, 1268208750951634765562, 40419340092267053380782, 1293151592990764737265490
Offset: 0

Views

Author

W. Edwin Clark, Feb 09 2009

Keywords

Comments

Let b(n) = S(d,n) be the coordination sequence of the lattice A_d. Then this sequence is a(n) = S(2n,n). See Conway-Sloane. The sequence is defined by Couveignes et al.

Examples

			The a(1) = 6 sequences are (1,-1,0), (-1,1,0), (1,0,-1), (-1,0,1), (0,1,-1) and (0,-1,1).
		

Crossrefs

a(n) = A103881(2n, n), A103882.

Programs

  • Maple
    S:=proc(d,n) add(binomial(d,k)^2*binomial(n-k+d-1,d-1),k=0..d); end proc; a:=n->S(2*n,n);
  • Mathematica
    Table[ Binomial[-1 + 3 n, -1 + 2 n] HypergeometricPFQ[{-2 n, -2 n, -n}, {1, 1 - 3 n}, 1], {n, 0, 10}]  (* Eric W. Weisstein, Feb 10 2009 *)
  • PARI
    S(d, n) = sum(k=0, d, binomial(d,k)^2*binomial(n-k+d-1, d-1));
    concat(1, vector(20, n, S(2*n,n))) \\ Colin Barker, Dec 24 2015

Formula

a(n) = S(2n,n) where S(d,n) = Sum_{k=0..d} C(d,k)^2*C(n-k+d-1,d-1) from formula (22) in Conway-Sloane.
a(n) ~ (1 + sqrt(2))^(4*n + 1/2) / (2^(5/4) * Pi * n). - Vaclav Kotesovec, Apr 10 2018
From Peter Bala, Dec 19 2020: (Start)
a(n) = Sum_{k = 0..n} C(2*n,n-k)^2 * C(2*n+k-1,k).
a(n) = Sum_{k = 1..n} C(2*n, k)*C(2*n+k, k)*C(n-1,k-1) for n >= 1.
a(n) = [x^n] P(2*n,(1 + x)/(1 - x)), where P(n,x) denotes the n-th Legendre polynomial. Cf. A103882.
a(n) = C(2*n,n)^2 * hypergeom([-n, -n, 2*n], [n+1, n+1], 1).
n^2*(2*n - 1)^2*(24*n^3 - 105*n^2 + 152*n - 73)*a(n) = (3264*n^7 - 20808*n^6 + 53900*n^5 - 73159*n^4 + 55963*n^3 - 24107*n^2 + 5436*n - 504)*a(n - 1) - (2*n - 1)*(2*n - 3)*(n - 2)^2*(24*n^3 - 33*n^2 + 14*n - 2)*a(n - 2).
Conjectural: for any prime p >= 5, a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for all positive integers n and k.
More generally, if r and s are positive integers, we conjecture that the same supercongruences hold for the sequence defined by [x^(r*n)] P(s*n,(1 + x)/(1 - x)). (End)
Even more generally, we conjecture that the same supercongruences hold for the sequence defined by [x^(r*n)] (1 + x)^(A*n) * (1 - x)^(B*n) * P(s*n,(1 + x)/(1 - x)), where A and B are integers. - Peter Bala, Mar 17 2023
a(n) = 2*Sum_{k = 0..2*n-1} (-1)^(k+1)*binomial(2*n-1, k)*binomial(n+k, k)* binomial(2*n+k-1, k) for n >= 1. - Peter Bala, Sep 25 2024

Extensions

Formula incorrectly copied from A143699 removed by R. J. Mathar, Mar 11 2010

A103882 a(n) = Sum_{i=0..n} C(n+1,i)*C(n-1,i-1)*C(2n-i,n).

Original entry on oeis.org

1, 2, 12, 92, 780, 7002, 65226, 623576, 6077196, 60110030, 601585512, 6078578508, 61908797418, 634756203018, 6545498596110, 67830161708592, 705951252118284, 7375213677918294, 77310179609631564, 812839595630249540, 8569327862277434280, 90562666977432643862
Offset: 0

Views

Author

Ralf Stephan, Feb 20 2005

Keywords

Comments

Number of permutations of n copies of 1..3 with all adjacent differences <= 1 in absolute value. - R. H. Hardin, May 06 2010 [Cf. A177316. - Peter Bala, Jan 14 2020]

Crossrefs

Equals A103881(n, n).
Row n=3 of A331562.

Programs

  • Magma
    [1] cat [&+[Binomial(n+1, i)*Binomial(n-1, i-1) * Binomial(2*n-i, n): i in [0..n]]:n in  [1..21]]; // Marius A. Burtea, Jan 19 2020
    
  • Magma
    [&+[Binomial(n, k)^2*Binomial(n+k-1, k): k in [0..n]]:n in  [0..21]]; // Marius A. Burtea, Jan 19 2020
    
  • Maple
    a:= proc(n) option remember; `if`(n<2, n+1,
          ((n-1)*(55*n^3-143*n^2+102*n-24)*a(n-1)+
          n*(5*n-3)*(n-2)^2*a(n-2))/((n-1)*(5*n-8)*n^2))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 29 2015
    # Alternative:
    a := n -> hypergeom([-n, -n, n], [1, 1], 1):
    seq(simplify(a(n)), n=0..21); # Peter Luschny, Jan 19 2020
  • Mathematica
    Drop[Table[Sum[Sum[Multinomial[r, g, n + 1 - r - g] Binomial[n - 1,n - r] Binomial[n - 1, n - g], {g, 1, n}], {r, 1, n}], {n, 0, 18}], 1] (* Geoffrey Critzer, Jun 29 2015 *)
    Table[Sum[Binomial[n+1,k]Binomial[n-1,k-1]Binomial[2n-k,n],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    a(n) = polcoef(pollegendre(n, (1 + x)/(1 - x)) + O(x^(n+1)), n); \\ Michel Marcus, Dec 20 2020
    
  • Python
    def A103882(n):
        if n == 0: return 1
        m, g = 1, 0
        for k in range(n+1):
            g += m*n//(n+k)
            m *= (n+k+1)*(n-k)**2
            m //= (k+1)**3
        return g # Chai Wah Wu, Oct 04 2022
    
  • SageMath
    def A103882(n): return hypergeometric([-n,-n,n], [1,1], 1).simplify()
    [A103882(n) for n in range(31)] # G. C. Greubel, May 24 2023

Formula

a(n) = (A005258(n-1) + 3*A005258(n))/5 (Apéry numbers). - Mark van Hoeij, Jul 13 2010
n^2*(n-1)*(5*n-8)*a(n) = (n-1)*(55*n^3-143*n^2+102*n-24)*a(n-1) + n*(n-2)^2*(5*n-3)*a(n-2). - Alois P. Heinz, Jun 29 2015
a(n) ~ phi^(5*n + 3/2) / (2*Pi*5^(1/4)*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 21 2019
From Peter Bala, Jan 14 2020: (Start)
a(n) = Sum_{k = 0..n} C(n,k)^2*C(n+k-1,k). Cf. A005258.
For any prime p >= 5, a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for all positive integers n and k (follows from known supercongruences satisfied by the Apéry numbers A005258 - see Straub, Example 3.4). (End)
a(n) = hypergeometric([-n, -n, n], [1, 1], 1). - Peter Luschny, Jan 19 2020
From Peter Bala, Dec 19 2020: (Start)
a(n) = Sum_{k = 1..n} C(n,k)*C(n+k,k)*C(n-1,k-1) for n >= 1.
a(n) = [x^n] P(n, (1 + x)/(1 - x)), where P(n,x) denotes the n-th Legendre polynomial. Cf. A156554. (End)
a(n) = Sum_{k = 0..n} binomial(2*n-k-1,n-k)*binomial(n,k)^2. Cf. A108628. - Peter Bala, Mar 24 2022
From Peter Bala, Apr 15 2022: (Start)
a(-n) = (-1)^n*A352654(n).
a(n) = [x^n*y^n*z^(n-1)] 1/(1 - x - y - z + x*z + y*z - x*y*z) for n >= 1.
a(n) = B(n,n,n-1) in the notation of Straub, see equation 24.
a(n) = [x^n*y^n*z^(n-1)] (x + y + z)^n*(x + y)^n*(y + z)^(n-1) for n >= 1. (End)
D-finite with recurrence 9*n^2*a(n) -3*(31*n^2-27*n+6)*a(n-1) -2*(37*n^2-138*n+108)*a(n-2) -(n-3)*(17*n-56)*a(n-3) -(n-4)^2*a(n-4) = 0. - R. J. Mathar, Aug 01 2022
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n-1, n-k)*binomial(n+k, k)*binomial(n+k-1, k). - Peter Bala, Aug 13 2023
a(n) = Sum_{k = 0..n} (-1)^k * binomial(n+1, k)*binomial(2*n-k, n-k)^2. - Peter Bala, Oct 05 2024

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 29 2015

A103884 Square array A(n,k) read by antidiagonals: row n gives coordination sequence for lattice C_n.

Original entry on oeis.org

1, 1, 8, 1, 18, 16, 1, 32, 66, 24, 1, 50, 192, 146, 32, 1, 72, 450, 608, 258, 40, 1, 98, 912, 1970, 1408, 402, 48, 1, 128, 1666, 5336, 5890, 2720, 578, 56, 1, 162, 2816, 12642, 20256, 14002, 4672, 786, 64, 1, 200, 4482, 27008, 59906, 58728, 28610, 7392, 1026, 72
Offset: 2

Views

Author

Ralf Stephan, Feb 20 2005

Keywords

Examples

			Array begins:
  1,   8,    16,     24,      32,       40,        48, ... A022144;
  1,  18,    66,    146,     258,      402,       578, ... A010006;
  1,  32,   192,    608,    1408,     2720,      4672, ... A019560;
  1,  50,   450,   1970,    5890,    14002,     28610, ... A019561;
  1,  72,   912,   5336,   20256,    58728,    142000, ... A019562;
  1,  98,  1666,  12642,   59906,   209762,    596610, ... A019563;
  1, 128,  2816,  27008,  157184,   658048,   2187520, ... A019564;
  1, 162,  4482,  53154,  374274,  1854882,   7159170, ... A035746;
  1, 200,  6800,  97880,  822560,  4780008,  21278640, ... A035747;
  1, 242,  9922, 170610, 1690370, 11414898,  58227906, ... A035748;
  1, 288, 14016, 284000, 3281280, 25534368, 148321344, ... A035749;
  ...
Antidiagonals, T(n, k), begins as:
  1;
  1,   8;
  1,  18,   16;
  1,  32,   66,   24;
  1,  50,  192,  146,   32;
  1,  72,  450,  608,  258,   40;
  1,  98,  912, 1970, 1408,  402,  48;
  1, 128, 1666, 5336, 5890, 2720, 578, 56;
		

Crossrefs

Programs

  • Magma
    A103884:= func< n,k | k eq 0 select 1 else 2*(&+[2^j*Binomial(n-k,j+1)*Binomial(2*k-1,j) : j in [0..2*k-1]]) >;
    [A103884(n,k): k in [0..n-2], n in [2..12]]; // G. C. Greubel, May 23 2023
    
  • Mathematica
    nmin = 2; nmax = 11; t[n_, 0]= 1; t[n_, k_]:= 2n*Hypergeometric2F1[1-2k, 1-n, 2, 2]; tnk= Table[ t[n, k], {n, nmin, nmax}, {k, 0, nmax-nmin}]; Flatten[ Table[ tnk[[ n-k+1, k ]], {n, 1, nmax-nmin+1}, {k, 1, n} ] ] (* Jean-François Alcover, Jan 24 2012, after formula *)
  • SageMath
    def A103884(n,k): return 1 if k==0 else 2*sum(2^j*binomial(n-k,j+1)*binomial(2*k-1,j) for j in range(2*k))
    flatten([[A103884(n,k) for k in range(n-1)] for n in range(2,13)]) # G. C. Greubel, May 23 2023

Formula

A(n,k) = Sum_{i=1..2*k} 2^i*C(n, i)*C(2*k-1, i-1), A(n,0) = 1 (array).
G.f. of n-th row: (Sum_{i=0..n} C(2*n, 2*i)*x^i)/(1-x)^n.
T(n, k) = A(n-k, k) (antidiagonals).
T(n, n-2) = A022144(n-2).
T(n, k) = 2*(n-k)*Hypergeometric2F1([1+k-n, 1-2*k], [2], 2), T(n, 0) = 1, for n >= 2, 0 <= k <= n-2. - G. C. Greubel, May 23 2023
From Peter Bala, Jul 09 2023: (Start)
T(n,k) = [x^k] Chebyshev_T(n, (1 + x)/(1 - x)), where Chebyshev_T(n, x) denotes the n-th Chebyshev polynomial of the first kind.
T(n+1,k) = T(n+1,k-1) + 2*T(n,k) + 2*T(n,k-1) + T(n-1,k) - T(n-1,k-1). (End)

Extensions

Definition clarified by N. J. A. Sloane, May 25 2023

A008387 Coordination sequence for A_6 lattice.

Original entry on oeis.org

1, 42, 462, 2562, 9492, 27174, 65226, 137886, 264936, 472626, 794598, 1272810, 1958460, 2912910, 4208610, 5930022, 8174544, 11053434, 14692734, 19234194, 24836196, 31674678, 39944058, 49858158, 61651128, 75578370, 91917462, 110969082
Offset: 0

Views

Author

Keywords

Crossrefs

Row 6 of A103881.

Programs

  • Magma
    [n eq 0 select 1 else 7*n*(11*n^4+35*n^2+14)/10: n in [0..50]]; // G. C. Greubel, May 26 2023
    
  • Maple
    1, seq(7*n*(11*n^4+35*n^2+14)/10, n=1..40);
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1}, {1,42,462,2562,9492,27174,65226}, 30] (* Jean-François Alcover, Jan 07 2019 *)
  • SageMath
    [7*n*(11*n^4 +35*n^2 +14)/10 +int(n==0) for n in range(51)] # G. C. Greubel, May 26 2023

Formula

a(n) = S(n,6) = 7*n*(11*n^4 + 35*n^2 + 14)/10, with S(n,m) = Sum_{k=0..m} binomial(m,k)^2 * binomial(n-k+m-1, m-1), for n > 0, and a(0) = 1.
G.f.: (1+36*x+225*x^2+400*x^3+225*x^4+36*x^5+x^6)/(1-x)^6 = 1 + 42*x*(1+5*x+10*x^2+5*x^3+x^4)/(1-x)^6. - Colin Barker, Sep 26 2012
E.g.f.: 1 + (1/10)*x*(420 + 1890*x + 2170*x^2 + 770*x^3 + 77*x^4)*exp(x). - G. C. Greubel, May 26 2023

A008395 Coordination sequence for A_10 lattice.

Original entry on oeis.org

1, 110, 3080, 40370, 322190, 1815506, 7925720, 28512110, 88206140, 241925530, 601585512, 1379301990, 2953859370, 5968878630, 11472968760, 21114177018, 37403270520, 64062783510, 106481351240, 172295622730, 272125000774, 420487598410
Offset: 0

Views

Author

Keywords

Crossrefs

Row 10 of A103881.

Programs

  • Magma
    [1] cat [11*n*(4199*n^8 +72930*n^6 +327327*n^4 +406120*n^2 +96624)/90720: n in [1..40]]; // G. C. Greubel, May 27 2023
    
  • Maple
    a:= n-> `if`(n=0, 1, 46189/90720*n^9+26741/3024*n^7+
             171457/4320*n^5+111683/2268*n^3+7381/630*n):
    seq(a(n), n=0..25);
  • Mathematica
    a[n_]:= If[n==0, 1, 11n(4199n^8 +72930n^6 +327327n^4 +406120n^2 +96624)/90720];
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jan 07 2019 *)
    LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1}, {1,110,3080, 40370,322190,1815506,7925720,28512110,88206140,241925530,601585512}, 30] (* Harvey P. Dale, Nov 27 2019 *)
  • SageMath
    [11*n*(4199*n^8 +72930*n^6 +327327*n^4 +406120*n^2 +96624)//90720 +int(n==0) for n in range(41)] # G. C. Greubel, May 27 2023

Formula

a(n) = 46189/90720*n^9 +26741/3024*n^7 +171457/4320*n^5 +111683/2268*n^3 +7381/630*n for n >= 1.
Sum_{d=1}^10 C(11, d) C(m/2-1, d-1) C(10-d+m/2, m/2), where norm m is always even. (Serra-Sagrista)
G.f.: (1 +100*x +2025*x^2 +14400*x^3 +44100*x^4 +63504*x^5 +44100*x^6 +14400*x^7 +2025*x^8 +100*x^9 +x^10)/(1-x)^10. - Colin Barker, Sep 26 2012

A008389 Coordination sequence for A_7 lattice.

Original entry on oeis.org

1, 56, 812, 5768, 26474, 91112, 256508, 623576, 1356194, 2703512, 5025692, 8823080, 14768810, 23744840, 36881420, 55599992, 81659522, 117206264, 164826956, 227605448, 309182762, 413820584, 546468188, 712832792, 919453346
Offset: 0

Views

Author

Keywords

Crossrefs

Row 7 of A103881.

Programs

  • Magma
    [1] cat [2 +n^2*(143*n^4 +770*n^2 +707)/30: n in [1..40]]; // G. C. Greubel, May 26 2023
    
  • Maple
    1, seq(2 +n^2*(143*n^4 +770*n^2 +707)/30, n=1..50);
  • Mathematica
    Table[n^2*(143*n^4 +770*n^2 +707)/30 +2 -Boole[n==0], {n,0,40}] (* G. C. Greubel, May 26 2023 *)
  • SageMath
    [2 +n^2*(143*n^4 +770*n^2 +707)/30 -int(n==0) for n in range(41)] # G. C. Greubel, May 26 2023

Formula

G.f.: (1+x)*(1+48*x+393*x^2+832*x^3+393*x^4+48*x^5+x^6)/(1-x)^7. - Colin Barker, Sep 26 2012
a(n) = 2 + n^2*(143*n^4 +770*n^2 +707)/30 with n>0, a(0)=1. - Bruno Berselli, Sep 26 2012
E.g.f.: -1 + (1/30)*(60 +1620*x +10530*x^2 +17490*x^3 +10065*x^4 +2145*x^5 +143*x^6)*exp(x). - G. C. Greubel, May 26 2023

A008391 Coordination sequence for A_8 lattice.

Original entry on oeis.org

1, 72, 1332, 11832, 66222, 271224, 889716, 2476296, 6077196, 13507416, 27717948, 53265960, 96900810, 168278760, 280819260, 452715672, 708113304, 1078467624, 1604095524, 2335932504, 3337508646, 4687156248, 6480461988, 8832976488, 11883194148, 15795816120
Offset: 0

Views

Author

Keywords

Crossrefs

Row 8 of A103881.

Programs

  • Magma
    [1] cat [n*(715*n^6 + 6006*n^4 +10395*n^2 +3044)/280: n in [1..40]]; // G. C. Greubel, May 26 2023
    
  • Maple
    1, seq(n*(715*n^6 + 6006*n^4 +10395*n^2 +3044)/280, n=1..40);
  • Mathematica
    Join[{1},Table[143/56n^7+429/20n^5+297/8n^3+761/70n,{n,30}]] (* or *)
    Join[{1},LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{72,1332,11832, 66222,271224,889716,2476296,6077196},30]] (* Harvey P. Dale, Mar 04 2012 *)
  • Maxima
    a[0]:1$
    a[1]:72$
    a[2]:1332$
    a[3]:11832$
    a[4]:66222$
    a[5]:271224$
    a[6]:889716$
    a[7]:2476296$
    a[8]:6077196$
    a[n]:=8*a[n-1]-28*a[n-2]+ 56*a[n-3]- 70*a[n-4]+56*a[n-5]-28*a[n-6]+8*a[n-7]-a[n-8];
    makelist(a[n],n,0,30); /* Martin Ettl, Oct 26 2012 */
    
  • SageMath
    [n*(715*n^6 + 6006*n^4 +10395*n^2 +3044)//280 +int(n==0) for n in range(41)] # G. C. Greubel, May 26 2023

Formula

a(n) = n*(715*n^6 + 6006*n^4 + 10395*n^2 + 3044)/280, a(0) = 1.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8). - Harvey P. Dale, Mar 04 2012
G.f.: (1 + 64*x + 784*x^2 + 3136*x^3 + 4900*x^4 + 3136*x^5 + 784*x^6 + 64*x^7 + x^8)/(1-x)^8. - Colin Barker, Sep 26 2012

A008393 Coordination sequence for A_9 lattice.

Original entry on oeis.org

1, 90, 2070, 22530, 151560, 731502, 2777370, 8809110, 24314490, 60110030, 135916002, 285510150, 563873400, 1056789450, 1893408750, 3262336002, 5431848930, 8774904690, 13799638910, 21186110970, 31830097752, 46894786710
Offset: 0

Views

Author

Keywords

Crossrefs

Row 9 of A103881.

Programs

  • Magma
    [1] cat [2 +11*n^2*(221*n^6 +2730*n^4 +7917*n^2 +5260)/2016: n in [1..40]]; // G. C. Greubel, May 27 2023
    
  • Maple
    1, seq(2 +11*n^2*(221*n^6 +2730*n^4 +7917*n^2 +5260)/2016, n=1..40);
  • Mathematica
    Table[11*n^2*(221*n^6 +2730*n^4 +7917*n^2 +5260)/2016 +2 -Boole[n==0], {n,0,40}] (* G. C. Greubel, May 27 2023 *)
  • SageMath
    [11*n^2*(221*n^6 +2730*n^4 +7917*n^2 +5260)//2016 +2 -int(n==0) for n in range(41)] # G. C. Greubel, May 27 2023

Formula

a(n) = 2 + 11*n^2*(221*n^6 + 2730*n^4 + 7917*n^2 + 5260)/2016, a(0) = 1.
G.f.: (1+x)*(1 + 80*x + 1216*x^2 + 5840*x^3 + 10036*x^4 + 5840*x^5 + 1216*x^6 + 80*x^7 + x^8)/(1-x)^9. - Colin Barker, Sep 26 2012

A157052 Number of integer sequences of length n+1 with sum zero and sum of absolute values 6.

Original entry on oeis.org

2, 18, 92, 340, 1010, 2562, 5768, 11832, 22530, 40370, 68772, 112268, 176722, 269570, 400080, 579632, 822018, 1143762, 1564460, 2107140, 2798642, 3670018, 4756952, 6100200, 7746050, 9746802, 12161268, 15055292, 18502290, 22583810, 27390112, 33020768, 39585282
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

  • Maple
    A157052:=n->n*(n + 1)*(n^4 + 2*n^3 + 11*n^2 + 10*n + 12)/36; seq(A157052(n), n=1..50); # Wesley Ivan Hurt, Feb 03 2014
  • Mathematica
    Table[n(n+1)(n^4 +2n^3 +11n^2 +10n +12)/36, {n, 50}] (* Wesley Ivan Hurt, Feb 03 2014 *)
  • Sage
    [n*(n+1)*(n^4 +2*n^3 +11*n^2 +10*n +12)/36 for n in (1..50)] # G. C. Greubel, Jan 23 2022

Formula

a(n) = T(n,3); T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
G.f.: 2*x*(1+2*x+4*x^2+2*x^3+x^4)/(1-x)^7. - Colin Barker, Mar 17 2012
a(n) = n*(n+1)*(n^4 +2*n^3 +11*n^2 +10*n +12)/36. - Bruno Berselli, Mar 17 2012
E.g.f.: (x/36)*(72 + 252*x + 264*x^2 + 108*x^3 + 18*x^4 + x^5)*exp(x). - G. C. Greubel, Jan 23 2022

A157068 Number of integer sequences of length n+1 with sum zero and sum of absolute values 38.

Original entry on oeis.org

2, 114, 3612, 80180, 1374690, 19234194, 227605448, 2335932504, 21186110970, 172295622730, 1271112537684, 8588601364668, 53573492643034, 310601807143530, 1683493452034320, 8573748834211984, 41210997268585158, 187693442844729174, 812839595630249540
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,19); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 25 2022: (Start)
a(n) = (n+1)*binomial(n+18, 19)*Hypergeometric3F2([-18, -n, 1-n], [2, -n-18], 1).
a(n) = (35345263800/38!)*n*(n+1)*(778817392288148379660189696000000 + 1984223956005743569581323059200000*n + 3392214823876583668626122342400000*n^2 + 3227079634641025484578928197632000*n^3 + 2701114821085872776574503662387200*n^4 + 1477486663626167257723210367631360*n^5 + 794678697494482855499280703586304*n^6 + 289485264886342590944226501328896*n^7 + 112195641614805001937808853208064*n^8 + 29309532027252333838411983247872*n^9 + 8732100429652853130168723017472*n^10 + 1708566742801697011435174735872*n^11 + 408081704870580048838437092992*n^12 + 61460345467484307832839519168*n^13 + 12123027157132710911533327584*n^14 + 14298582910205269163512480328n^15 + 238150505845545646647030204*n^16 + 222226805381963345901159308n^17 + 3179819458407554816818235*n^18 + 235823049245552968253250*n^19 + 29394217444775030780985*n^20 + 17315150592375085755608n^21 + 190160234133314656140*n^22 + 8844512620448927880*n^23 + 864030358357843740*n^24 + 31339517913669420*n^25 + 2745580274521866*n^26 + 76036376515644*n^27 + 6015727425006*n^28 + 122857968168*n^29 + 8831668028*n^30 + 125358408*n^31 + 8231808*n^32 + 72522*n^33 + 4371*n^34 + 18*n^35 + n^36).
G.f.: 2*x*(1 + 18*x + 324*x^2 + 2754*x^3 + 23409*x^4 + 124848*x^5 + 665856*x^6 + 2496960*x^7 + 9363600*x^8 + 26218080*x^9 + 73410624*x^10 + 159056352*x^11 + 344622096*x^12 + 590780736*x^13 + 1012766976*x^14 + 1392554592*x^15 + 1914762564*x^16 + 2127513960*x^17 + 2363904400*x^18 + 2127513960*x^19 + 1914762564*x^20 + 1392554592*x^21 + 1012766976*x^22 + 590780736*x^23 + 344622096*x^24 + 159056352*x^25 + 73410624*x^26 + 26218080*x^27 + 9363600*x^28 + 2496960*x^29 + 665856*x^30 + 124848*x^31 + 23409*x^32 + 2754*x^33 + 324*x^34 + 18*x^35 + x^36)/(1-x)^39. (End)
Showing 1-10 of 33 results. Next