cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A103882 a(n) = Sum_{i=0..n} C(n+1,i)*C(n-1,i-1)*C(2n-i,n).

Original entry on oeis.org

1, 2, 12, 92, 780, 7002, 65226, 623576, 6077196, 60110030, 601585512, 6078578508, 61908797418, 634756203018, 6545498596110, 67830161708592, 705951252118284, 7375213677918294, 77310179609631564, 812839595630249540, 8569327862277434280, 90562666977432643862
Offset: 0

Views

Author

Ralf Stephan, Feb 20 2005

Keywords

Comments

Number of permutations of n copies of 1..3 with all adjacent differences <= 1 in absolute value. - R. H. Hardin, May 06 2010 [Cf. A177316. - Peter Bala, Jan 14 2020]

Crossrefs

Equals A103881(n, n).
Row n=3 of A331562.

Programs

  • Magma
    [1] cat [&+[Binomial(n+1, i)*Binomial(n-1, i-1) * Binomial(2*n-i, n): i in [0..n]]:n in  [1..21]]; // Marius A. Burtea, Jan 19 2020
    
  • Magma
    [&+[Binomial(n, k)^2*Binomial(n+k-1, k): k in [0..n]]:n in  [0..21]]; // Marius A. Burtea, Jan 19 2020
    
  • Maple
    a:= proc(n) option remember; `if`(n<2, n+1,
          ((n-1)*(55*n^3-143*n^2+102*n-24)*a(n-1)+
          n*(5*n-3)*(n-2)^2*a(n-2))/((n-1)*(5*n-8)*n^2))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 29 2015
    # Alternative:
    a := n -> hypergeom([-n, -n, n], [1, 1], 1):
    seq(simplify(a(n)), n=0..21); # Peter Luschny, Jan 19 2020
  • Mathematica
    Drop[Table[Sum[Sum[Multinomial[r, g, n + 1 - r - g] Binomial[n - 1,n - r] Binomial[n - 1, n - g], {g, 1, n}], {r, 1, n}], {n, 0, 18}], 1] (* Geoffrey Critzer, Jun 29 2015 *)
    Table[Sum[Binomial[n+1,k]Binomial[n-1,k-1]Binomial[2n-k,n],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    a(n) = polcoef(pollegendre(n, (1 + x)/(1 - x)) + O(x^(n+1)), n); \\ Michel Marcus, Dec 20 2020
    
  • Python
    def A103882(n):
        if n == 0: return 1
        m, g = 1, 0
        for k in range(n+1):
            g += m*n//(n+k)
            m *= (n+k+1)*(n-k)**2
            m //= (k+1)**3
        return g # Chai Wah Wu, Oct 04 2022
    
  • SageMath
    def A103882(n): return hypergeometric([-n,-n,n], [1,1], 1).simplify()
    [A103882(n) for n in range(31)] # G. C. Greubel, May 24 2023

Formula

a(n) = (A005258(n-1) + 3*A005258(n))/5 (Apéry numbers). - Mark van Hoeij, Jul 13 2010
n^2*(n-1)*(5*n-8)*a(n) = (n-1)*(55*n^3-143*n^2+102*n-24)*a(n-1) + n*(n-2)^2*(5*n-3)*a(n-2). - Alois P. Heinz, Jun 29 2015
a(n) ~ phi^(5*n + 3/2) / (2*Pi*5^(1/4)*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 21 2019
From Peter Bala, Jan 14 2020: (Start)
a(n) = Sum_{k = 0..n} C(n,k)^2*C(n+k-1,k). Cf. A005258.
For any prime p >= 5, a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for all positive integers n and k (follows from known supercongruences satisfied by the Apéry numbers A005258 - see Straub, Example 3.4). (End)
a(n) = hypergeometric([-n, -n, n], [1, 1], 1). - Peter Luschny, Jan 19 2020
From Peter Bala, Dec 19 2020: (Start)
a(n) = Sum_{k = 1..n} C(n,k)*C(n+k,k)*C(n-1,k-1) for n >= 1.
a(n) = [x^n] P(n, (1 + x)/(1 - x)), where P(n,x) denotes the n-th Legendre polynomial. Cf. A156554. (End)
a(n) = Sum_{k = 0..n} binomial(2*n-k-1,n-k)*binomial(n,k)^2. Cf. A108628. - Peter Bala, Mar 24 2022
From Peter Bala, Apr 15 2022: (Start)
a(-n) = (-1)^n*A352654(n).
a(n) = [x^n*y^n*z^(n-1)] 1/(1 - x - y - z + x*z + y*z - x*y*z) for n >= 1.
a(n) = B(n,n,n-1) in the notation of Straub, see equation 24.
a(n) = [x^n*y^n*z^(n-1)] (x + y + z)^n*(x + y)^n*(y + z)^(n-1) for n >= 1. (End)
D-finite with recurrence 9*n^2*a(n) -3*(31*n^2-27*n+6)*a(n-1) -2*(37*n^2-138*n+108)*a(n-2) -(n-3)*(17*n-56)*a(n-3) -(n-4)^2*a(n-4) = 0. - R. J. Mathar, Aug 01 2022
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n-1, n-k)*binomial(n+k, k)*binomial(n+k-1, k). - Peter Bala, Aug 13 2023
a(n) = Sum_{k = 0..n} (-1)^k * binomial(n+1, k)*binomial(2*n-k, n-k)^2. - Peter Bala, Oct 05 2024

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 29 2015

A157052 Number of integer sequences of length n+1 with sum zero and sum of absolute values 6.

Original entry on oeis.org

2, 18, 92, 340, 1010, 2562, 5768, 11832, 22530, 40370, 68772, 112268, 176722, 269570, 400080, 579632, 822018, 1143762, 1564460, 2107140, 2798642, 3670018, 4756952, 6100200, 7746050, 9746802, 12161268, 15055292, 18502290, 22583810, 27390112, 33020768, 39585282
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

  • Maple
    A157052:=n->n*(n + 1)*(n^4 + 2*n^3 + 11*n^2 + 10*n + 12)/36; seq(A157052(n), n=1..50); # Wesley Ivan Hurt, Feb 03 2014
  • Mathematica
    Table[n(n+1)(n^4 +2n^3 +11n^2 +10n +12)/36, {n, 50}] (* Wesley Ivan Hurt, Feb 03 2014 *)
  • Sage
    [n*(n+1)*(n^4 +2*n^3 +11*n^2 +10*n +12)/36 for n in (1..50)] # G. C. Greubel, Jan 23 2022

Formula

a(n) = T(n,3); T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
G.f.: 2*x*(1+2*x+4*x^2+2*x^3+x^4)/(1-x)^7. - Colin Barker, Mar 17 2012
a(n) = n*(n+1)*(n^4 +2*n^3 +11*n^2 +10*n +12)/36. - Bruno Berselli, Mar 17 2012
E.g.f.: (x/36)*(72 + 252*x + 264*x^2 + 108*x^3 + 18*x^4 + x^5)*exp(x). - G. C. Greubel, Jan 23 2022

A157068 Number of integer sequences of length n+1 with sum zero and sum of absolute values 38.

Original entry on oeis.org

2, 114, 3612, 80180, 1374690, 19234194, 227605448, 2335932504, 21186110970, 172295622730, 1271112537684, 8588601364668, 53573492643034, 310601807143530, 1683493452034320, 8573748834211984, 41210997268585158, 187693442844729174, 812839595630249540
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,19); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 25 2022: (Start)
a(n) = (n+1)*binomial(n+18, 19)*Hypergeometric3F2([-18, -n, 1-n], [2, -n-18], 1).
a(n) = (35345263800/38!)*n*(n+1)*(778817392288148379660189696000000 + 1984223956005743569581323059200000*n + 3392214823876583668626122342400000*n^2 + 3227079634641025484578928197632000*n^3 + 2701114821085872776574503662387200*n^4 + 1477486663626167257723210367631360*n^5 + 794678697494482855499280703586304*n^6 + 289485264886342590944226501328896*n^7 + 112195641614805001937808853208064*n^8 + 29309532027252333838411983247872*n^9 + 8732100429652853130168723017472*n^10 + 1708566742801697011435174735872*n^11 + 408081704870580048838437092992*n^12 + 61460345467484307832839519168*n^13 + 12123027157132710911533327584*n^14 + 14298582910205269163512480328n^15 + 238150505845545646647030204*n^16 + 222226805381963345901159308n^17 + 3179819458407554816818235*n^18 + 235823049245552968253250*n^19 + 29394217444775030780985*n^20 + 17315150592375085755608n^21 + 190160234133314656140*n^22 + 8844512620448927880*n^23 + 864030358357843740*n^24 + 31339517913669420*n^25 + 2745580274521866*n^26 + 76036376515644*n^27 + 6015727425006*n^28 + 122857968168*n^29 + 8831668028*n^30 + 125358408*n^31 + 8231808*n^32 + 72522*n^33 + 4371*n^34 + 18*n^35 + n^36).
G.f.: 2*x*(1 + 18*x + 324*x^2 + 2754*x^3 + 23409*x^4 + 124848*x^5 + 665856*x^6 + 2496960*x^7 + 9363600*x^8 + 26218080*x^9 + 73410624*x^10 + 159056352*x^11 + 344622096*x^12 + 590780736*x^13 + 1012766976*x^14 + 1392554592*x^15 + 1914762564*x^16 + 2127513960*x^17 + 2363904400*x^18 + 2127513960*x^19 + 1914762564*x^20 + 1392554592*x^21 + 1012766976*x^22 + 590780736*x^23 + 344622096*x^24 + 159056352*x^25 + 73410624*x^26 + 26218080*x^27 + 9363600*x^28 + 2496960*x^29 + 665856*x^30 + 124848*x^31 + 23409*x^32 + 2754*x^33 + 324*x^34 + 18*x^35 + x^36)/(1-x)^39. (End)

A157074 Number of integer sequences of length n+1 with sum zero and sum of absolute values 50.

Original entry on oeis.org

2, 150, 6252, 182500, 4112502, 75578370, 1173777752, 15795816120, 187652162502, 1996568642530, 19245807386652, 169668375420180, 1378768046330402, 10396793993805030, 73166155146412752, 482928212647720720, 3002693915693248002, 17655197338344400470
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,25); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 27 2022: (Start)
a(n) = (n+1)*binomial(n+24, 25)*Hypergeometric3F2([-24, -n, 1-n], [2, -n-24], 1).
a(n) = (126410606437752/50!)*n*(n+1)*(9623905480333281923493425053824177930240000000000 + 27100515339271296805042905104567762524569600000000*n + 49226599934719560481828455826236675352166400000000*n^2 + 51923175705445481350794593882064923048017920000000*n^3 + 46502829595021715716879102923565907828539392000000*n^4 + 28607394119885617552139740430561122618473185280000*n^5 + 16559588497213417883781098164439679738807582720000*n^6 + 6903192311627666498917104674104501458397298688000*n^7 + 2894036204442771597885580471785456670461945446400*n^8 + 882529358789488763775646630321568918645729918976*n^9 + 285704714285545970609012303782721701384304001024*n^10 + 66744193695557588078616189319402098781536485376*n^11 + 17394219679949413313652735722550417627568410624*n^12 + 3209212575849629078911083109861120504852463616*n^13 + 693340015644326307061765976396831207893776384*n^14 + 103183723405307213352941409893689330849622016*n^15 + 18890270959451165193941203482138711306505984*n^16 + 2301923694341735297363581288294981193895936*n^17 + 363246399568340082151669298560235347864064*n^18 + 36632957463825141955678003229613126558336*n^19 + 5051271387716061681982819535517710183664*n^20 + 424699960734096109443243714664325553216*n^21 + 51748891662219811557282274201341501784*n^22 + 3644289612230496197746802122023398616*n^23 + 396093870596357042648294916274601009*n^24 + 23416970176809393473086005534732576*n^25 + 2288479608700865971390942858179924*n^26 + 113584302206510356395975946196976*n^27 + 10049618631034902174836327665474*n^28 + 417815336521106587249172637024*n^29 + 33668912037122043295220280476*n^30 + 1166960621063436872100315624*n^31 + 86099204270791153803452751*n^32 + 2468552637980851499947584*n^33 + 167536461123588897837416*n^34 + 3927535896285273089184*n^35 + 246218365513296690316*n^36 + 4640273089678232064*n^37 + 269714108783157936*n^38 + 3986042964314664*n^39 + 215542329647711*n^40 + 2405227111584*n^41 + 121370670916*n^42 + 961331184*n^43 + 45396066*n^44 + 227424*n^45 + 10076*n^46 + 24*n^47 + n^48).
G.f.: 2*x*(1 + 24*x + 576*x^2 + 6624*x^3 + 76176*x^4 + 558624*x^5 + 4096576*x^6 + 21507024*x^7 + 112911876*x^8 + 451647504*x^9 + 1806590016*x^10 + 5720868384*x^11 + 18116083216*x^12 + 46584213984*x^13 + 119787978816*x^14 + 254549454984*x^15 + 540917591841*x^16 + 961631274384*x^17 + 1709566710016*x^18 + 2564350065024*x^19 + 3846525097536*x^20 + 4895577396864*x^21 + 6230734868736*x^22 + 6749962774464*x^23 + 7312459672336*x^24 + 6749962774464*x^25 + 6230734868736*x^26 + 4895577396864*x^27 + 3846525097536*x^28 + 2564350065024*x^29 + 1709566710016*x^30 + 961631274384*x^31 + 540917591841*x^32 + 254549454984*x^33 + 119787978816*x^34 + 46584213984*x^35 + 18116083216*x^36 + 5720868384*x^37 + 1806590016*x^38 + 451647504*x^39 + 112911876*x^40 + 21507024*x^41 + 4096576*x^42 + 558624*x^43 + 76176*x^44 + 6624*x^45 + 576*x^46 + 24*x^47 + x^48)/(1-x)^51. (End)

A177322 Number of permutations of n copies of 1..4 with all adjacent differences <= 2 in absolute value.

Original entry on oeis.org

1, 12, 660, 51240, 4635540, 457507512, 47768769048, 5188083048720, 580132098966420, 66341857216154520, 7722843117550721160, 912113857017595941072, 109025503164832356811800, 13164173606420256001705200, 1603262885152270822600633200, 196721396289915224779758846240
Offset: 0

Views

Author

R. H. Hardin, May 06 2010

Keywords

Crossrefs

Formula

From Peter Bala, Nov 05 2024: (Start)
The following are conjectural:
For n >= 1, a(n) = Sum_{k = 0..2*n} (-1)^(n+k) * (k/n)^2 * binomial(2*n, k)^4. Cf. the identity Sum_{k = 0..2*n} (-1)^(n+k) * (k/n) * binomial(2*n, k)^2 = binomial(2*n, n) = A000984(n) for n >= 1.
For n >= 1, a(n) = 2 * binomial(2*n, n) * Sum_{k = 0..n} (k/n) * binomial(2*n, n-k)^2 * binomial(2*n+k, k).
P-recursive: n^3*(2*n-1)*(n-1)*(24*n^3-105*n^2+152*n-73)*a(n) = 2*(n-1)*(3264*n^7-20808*n^6+53900*n^5-73159*n^4+55963*n^3-24107*n^2+5436*n-504)*a(n-1) - 4*(2*n-1)*(24*n^3-33*n^2+14*n-2)*(2*n-3)^2*(n-2)^2*a(n-2) with a(1) = 12 and a(0) = 1.
The supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r. (End)
a(n) = A156554(n) * A000984(n). A156554 counts ways to place 1s and 4s in the permutation; a positive (resp. negative) sequence element in A156554 is a run-length of 1s (resp. 4s) followed by a 2 or 3 or the end of the permutation. Each zero in A156554 corresponds to an additional 2 or 3 in the permutation. - Martin Fuller, Jun 07 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 07 2025

A157053 Number of integer sequences of length n+1 with sum zero and sum of absolute values 8.

Original entry on oeis.org

2, 24, 162, 780, 2970, 9492, 26474, 66222, 151560, 322190, 643632, 1219374, 2206932, 3838590, 6447660, 10501172, 16639974, 25727292, 38906870, 57671880, 83945862, 120177024, 169447302, 235597650, 323371100, 438575202, 588265524, 780951962, 1026829680
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*(n+1)*(n^2+n+6)*(n^4 +2*n^3 +23*n^2 +22*n +24)/576, {n,50}] (* G. C. Greubel, Jan 23 2022 *)
  • Sage
    [n*(n+1)*(n^2+n+6)*(n^4 +2*n^3 +23*n^2 +22*n +24)/576 for n in (1..50)] # G. C. Greubel, Jan 23 2022

Formula

a(n) = T(n,4); T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
G.f.: 2*x*(1+3*x+9*x^2+9*x^3+9*x^4+3*x^5+x^6)/(1-x)^9. - Colin Barker, Mar 17 2012
a(n) = n*(n+1)*(n^2+n+6)*(n^4 +2*n^3 +23*n^2 +22*n +24)/576. - Bruno Berselli, Mar 17 2012
E.g.f.: (x/576)*(1152 +5760*x +9216*x^2 +6432*x^3 +2208*x^4 +384*x^5 +32*x^6 +x^7)*exp(x). - G. C. Greubel, Jan 23 2022

A157054 Number of integer sequences of length n+1 with sum zero and sum of absolute values 10.

Original entry on oeis.org

2, 30, 252, 1500, 7002, 27174, 91112, 271224, 731502, 1815506, 4197468, 9129276, 18827718, 37060506, 70006512, 127485584, 224676522, 384468534, 640622012, 1041949020, 1657762722, 2584888350, 3956576472, 5953712520, 8818775030, 12873059082, 18537751260
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*(n+1)*(n^8 +4*n^7 +66*n^6 +184*n^5 +1089*n^4 +1876*n^3 +4604*n^2 +3696*n +2880)/14400, {n,50}] (* G. C. Greubel, Jan 23 2022 *)
  • Sage
    [n*(n+1)*(n^8 +4*n^7 +66*n^6 +184*n^5 +1089*n^4 +1876*n^3 +4604*n^2 +3696*n +2880)/14400 for n in (1..50)] # G. C. Greubel, Jan 23 2022

Formula

a(n) = T(n,5); T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
G.f.: 2*x*(1+4*x+16*x^2+24*x^3+36*x^4+24*x^5+16*x^6+4*x^7+x^8)/(1-x)^11. - Colin Barker, Mar 17 2012
From G. C. Greubel, Jan 23 2022: (Start)
a(n) = n*(n+1)*(n^8 +4*n^7 +66*n^6 +184*n^5 +1089*n^4 +1876*n^3 +4604*n^2 +3696*n +2880)/14400.
E.g.f.: (x/14400)*(28800 +187200*x +403200*x^2 +398400*x^3 +207840*x^4 +61200*x^5 +10400*x^6 +1000*x^7 +50*x^8 +x^9)*exp(x). (End)

A157055 Number of integer sequences of length n+1 with sum zero and sum of absolute values 12.

Original entry on oeis.org

2, 36, 362, 2570, 14240, 65226, 256508, 889716, 2777370, 7925720, 20934474, 51697802, 120353324, 265953170, 561075720, 1135620536, 2214405618, 4175000796, 7634582090, 13577591370, 23539760552, 39868752506, 66087441092, 107392877100, 171332460650, 268708978512
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Column k=6 of A103881.
Cf. A156554.

Programs

  • Mathematica
    Table[n*(n+1)*(n^10 +5*n^9 +120*n^8 +450*n^7 +4173*n^6 +10965*n^5 +48530*n^4 +79300*n^3 +163176*n^2 +125280*n +86400)/518400, {n, 50}] (* G. C. Greubel, Jan 24 2022 *)
  • Sage
    [n*(n+1)*(n^10 +5*n^9 +120*n^8 +450*n^7 +4173*n^6 +10965*n^5 +48530*n^4 +79300*n^3 +163176*n^2 +125280*n +86400)/518400 for n in (1..50)] # G. C. Greubel, Jan 24 2022

Formula

a(n) = T(n,6) where T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
G.f.: 2*x*(1 +5*x +25*x^2 +50*x^3 +100*x^4 +100*x^5 +100*x^6 +50*x^7 +25*x^8 +5*x^9 +x^10)/(1-x)^13. - Colin Barker, Jan 25 2013
From G. C. Greubel, Jan 24 2022: (Start)
a(n) = n*(n+1)*(n^10 +5*n^9 +120*n^8 +450*n^7 +4173*n^6 +10965*n^5 +48530*n^4 +79300*n^3 +163176*n^2 +125280*n +86400)/518400.
E.g.f.: (x/518400)*(1036800 +8294400*x +22464000*x^2 +28728000*x^3 +20131200*x^4 +8369280*x^5 +2154240*x^6 +349200*x^7 +35400*x^8 +2160*x^9 +72*x^10 +x^11)*exp(x). (End)

A157056 Number of integer sequences of length n+1 with sum zero and sum of absolute values 14.

Original entry on oeis.org

2, 42, 492, 4060, 26070, 137886, 623576, 2476296, 8809110, 28512110, 85014204, 235895244, 614266354, 1511679210, 3536846160, 7907476016, 16967926746, 35078339106, 70098276620, 135798494460, 255689552382, 468969729382, 839584669992, 1469778991800, 2520031983950
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*(n+1)*(n^12 +6*n^11 +197*n^10 +930*n^9 +12363*n^8 +43938*n^7 +300551*n^6 +751710*n^5 +2756536*n^4 +4309656*n^3 +7816752*n^2 +5780160*n +3628800)/25401600, {n,50}] (* G. C. Greubel, Jan 24 2022 *)
  • Sage
    [n*(n+1)*(n^12 +6*n^11 +197*n^10 +930*n^9 +12363*n^8 +43938*n^7 +300551*n^6 +751710*n^5 +2756536*n^4 +4309656*n^3 +7816752*n^2 +5780160*n +3628800)/25401600 for n in (1..50)] # G. C. Greubel, Jan 24 2022

Formula

a(n) = T(n,7); T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
G.f.: 2*x*(1 +6*x +36*x^2 +90*x^3 +225*x^4 +300*x^5 +400*x^6 +300*x^7 +225*x^8 +90*x^9 +36*x^10 +6*x^11 +x^12)/(1-x)^15. - Colin Barker, Jan 25 2013
From G. C. Greubel, Jan 24 2022: (Start)
a(n) = n*(n+1)*(n^12 +6*n^11 +197*n^10 +930*n^9 +12363*n^8 +43938*n^7 +300551*n^6 +751710*n^5 +2756536*n^4 +4309656*n^3 +7816752*n^2 +5780160*n +3628800)/25401600.
E.g.f.: (x/25401600)*(50803200 +482630400*x +1574899200*x^2 +2472422400*x^3 +2176070400*x^4 +1169320320*x^5 +403683840*x^6 +92221920*x^7 +14129640*x^8 +1449420*x^9 +97608*x^10 +4116*x^11 +98*x^12 +x^13)*exp(x). (End)

A157057 Number of integer sequences of length n+1 with sum zero and sum of absolute values 16.

Original entry on oeis.org

2, 48, 642, 6040, 44130, 264936, 1356194, 6077196, 24314490, 88206140, 293744154, 907129236, 2619716554, 7125357540, 18363363690, 45076309166, 105864434424, 238815143406, 519252051080, 1091481669390, 2224042468032, 4403475647758, 8489857618992, 15969368635950
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(12870/16!)*n*(n+1)*(203212800 +349090560*n +487608192*n^2 +296058000*n^3 +196660016*n^4 +61391512*n^5 +25601072*n^6 +4564385*n^7 + 1344383*n^8 + 138621*n^9 +30835*n^10 +1715*n^11 +301*n^12 +7*n^13 +n^14), {n, 50}] (* G. C. Greubel, Jan 24 2022 *)
  • Sage
    [(12870/factorial(16))*n*(n+1)*(203212800 +349090560*n +487608192*n^2 +296058000*n^3 +196660016*n^4 +61391512*n^5 +25601072*n^6 +4564385*n^7 + 1344383*n^8 + 138621*n^9 +30835*n^10 +1715*n^11 +301*n^12 +7*n^13 +n^14) for n in (1..50)] # G. C. Greubel, Jan 24 2022

Formula

a(n) = T(n,8); T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
G.f.: 2*x*(1 + 7*x + 49*x^2 + 147*x^3 + 441*x^4 + 735*x^5 + 1225*x^6 + 1225*x^7 + 1225*x^8 + 735*x^9 + 441*x^10 + 147*x^11 + 49*x^12 + 7*x^13 + x^14)/(1-x)^17. - Colin Barker, Jan 25 2013
a(n) = (12870/16!)*n*(n+1)*(203212800 + 349090560*n + 487608192*n^2 + 296058000*n^3 + 196660016*n^4 + 61391512*n^5 + 25601072*n^6 + 4564385*n^7 + 1344383*n^8 + 138621*n^9 + 30835*n^10 + 1715*n^11 + 301*n^12 + 7*n^13 + n^14). - G. C. Greubel, Jan 24 2022
Showing 1-10 of 25 results. Next