cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007901 Number of minimal unavoidable n-celled pebbling configurations.

Original entry on oeis.org

0, 0, 0, 0, 4, 22, 98, 412, 1700, 6974, 28576, 117146, 480722, 1974914, 8122084, 33435390, 137757480, 567998152, 2343472004, 9674252070, 39956606552, 165099840920, 682446679582, 2821858504062, 11671572244666, 48287711006032, 199822535773958, 827069530795224, 3423890026639184, 14176516741276534
Offset: 1

Views

Author

odlyzko(AT)dtc.umn.edu (A. M. Odlyzko)

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.50.

Crossrefs

Cf. A007902.

Programs

  • Maple
    The Maple snippet provides an alternative solution to the Google congratulations puzzle at http://www.7427466391.com. After running the Maple code, f(1) to f(4) match the puzzle, with f(5) being 1510865746 and f(6) being 6171783928.
    Digits:=2000: E:=evalf(exp(1)): g:=n->trunc((E-(10^(-n)*trunc(E*10^n)))*10^(10+n)): h:=[0,0,0,0,4,22,98,412,1700]: f:=k->g(h[k+3]):
  • Mathematica
    p[k_] := If[k < 7, {0, 4, -14, 22, -20, 6}[[k]], 0]; h[n_] := Sum[ k*p[k] * Binomial[2*n-k-1, n-k], {k, 1, n}]/n; u[n_] := Sum[ Sum[Binomial[j, n-k-j]*7^(2*k-n+j)*Binomial[k, j]*(-2)^(-n+k+2*j)*3^(2*(n-k-j)), {j, 0, k}], {k, 0, n}]; b[n_] := Sum[h[i]*u[n-i], {i, 1, n}]; a[n_] := If[n<2, 0 , b[n-2]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jan 14 2015, after Vladimir Kruchinin *)
    CoefficientList[Series[x^3((1-3x+x^2)Sqrt[1-4x]-1+5x-x^2-6x^3)/(1-7x+14x^2-9x^3),{x,0,30}],x] (* Harvey P. Dale, May 19 2024 *)
  • Maxima
    Polynom:[0,4,-14,22,-20,6];
    p(k):=if k<7 then Polynom[k] else 0;
    h(n):=sum(k*p(k)*binomial(2*n-k-1,n-k),k,1,n)/n;
    u(n):=sum(sum(binomial(j,n-k-j)*7^(2*k-n+j)*binomial(k,j)*(-2)^(-n+k+2*j)*3^(2*(n-k-j)),j,0,k),k,0,n);
    b(n):=sum(h(i)*u(n-i),i,1,n);
    a(n):=if n<2 then 0 else b(n-2);
    makelist(a(n),n,0,40); /* Vladimir Kruchinin, Sep 20 2014 */
  • PARI
    x='x+O('x^44);
    gf=x^3*((1-3*x+x^2)*sqrt(1-4*x)-1+5*x-x^2-6*x^3)/(1-7*x+14*x^2-9*x^3);
    Vec(gf) \\ Joerg Arndt, Apr 20 2011
    

Formula

G.f.: x^3*((1-3*x+x^2)*sqrt(1-4*x)-1+5*x-x^2-6*x^3)/(1-7*x+14*x^2-9*x^3) [from the Stanley reference]. - Joerg Arndt, Apr 20 2011
Conjecture: (n-3)*(n-8)*a(n) +(-11*n^2+127*n-324)*a(n-1) +42*(n^2-12*n+34)*a(n-2) +(-65*n^2+799*n-2400)*a(n-3) +18*(n-6)*(2*n-13)*a(n-4)=0. - R. J. Mathar, Aug 14 2012