cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007904 Crystal ball sequence for diamond.

Original entry on oeis.org

1, 5, 17, 41, 83, 147, 239, 363, 525, 729, 981, 1285, 1647, 2071, 2563, 3127, 3769, 4493, 5305, 6209, 7211, 8315, 9527, 10851, 12293, 13857, 15549, 17373, 19335, 21439, 23691, 26095, 28657, 31381, 34273, 37337, 40579, 44003, 47615, 51419, 55421, 59625, 64037
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of [1, 4, 8, 4, 2, -4, 8, -16, 32, -64, 128, ...]. - Gary W. Adamson, Feb 07 2010

Crossrefs

Partial sums of A008253.

Programs

  • Maple
    gf:= -(x^4+2*x^3+4*x^2+2*x+1)/((x-1)^2*(x^2-1)*(1-x)):
    seq(coeff(series(gf,x,n+1),x,n), n=0..50);
  • Mathematica
    b[0]=1; b[1]=4; b[2]=8; b[3]=4; b[n_] := (-1)^n*2^(n-3); a[n_] := Sum[Binomial[n, k]*b[k], {k, 0, n}]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Aug 08 2012, after Gary W. Adamson *)
    LinearRecurrence[{3,-2,-2,3,-1},{1,5,17,41,83},80] (* Harvey P. Dale, Jan 22 2024 *)

Formula

G.f.: -(x^4 + 2*x^3 + 4*x^2 + 2*x + 1)/((x-1)^2*(x^2-1)*(1-x)).
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5). - Wesley Ivan Hurt, Jan 20 2024