cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007916 Numbers that are not perfect powers.

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83
Offset: 1

Views

Author

R. Muller

Keywords

Comments

From Gus Wiseman, Oct 23 2016: (Start)
There is a 1-to-1 correspondence between integers N >= 2 and sequences a(x_1),a(x_2),...,a(x_k) of terms from this sequence. Every N >= 2 can be written uniquely as a "power tower"
N = a(x_1)^a(x_2)^a(x_3)^...^a(x_k),
where the exponents are to be nested from the right.
Proof: If N is not a perfect power then N = a(x) for some x, and we are done. Otherwise, write N = a(x_1)^M for some M >=2, and repeat the process. QED
Of course, prime numbers also have distinct power towers (see A164336). (End)
These numbers can be computed with a modified Sieve of Eratosthenes: (1) start at n=2; (2) if n is not crossed out, then append n to the sequence and cross out all powers of n; (3) set n = n+1 and go to step 2. - Sam Alexander, Dec 15 2003
These are all numbers such that the multiplicities of the prime factors have no common divisor. The first number in the sequence whose prime multiplicities are not coprime is 180 = 2 * 2 * 3 * 3 * 5. Mathematica: CoprimeQ[2,2,1]->False. - Gus Wiseman, Jan 14 2017

Examples

			Example of the power tower factorizations for the first nine positive integers: 1=1, 2=a(1), 3=a(2), 4=a(1)^a(1), 5=a(3), 6=a(4), 7=a(5), 8=a(1)^a(2), 9=a(2)^a(1). - _Gus Wiseman_, Oct 20 2016
		

Crossrefs

Complement of A001597. Union of A052485 and A052486.
Cf. A153158 (squares of these numbers).
See A277562, A277564, A277576, A277615 for more about the power towers.
A278029 is a left inverse.
Cf. A052409.

Programs

  • Haskell
    a007916 n = a007916_list !! (n-1)
    a007916_list = filter ((== 1) . foldl1 gcd . a124010_row) [2..]
    -- Reinhard Zumkeller, Apr 13 2012
    
  • Magma
    [n : n in [2..1000] | not IsPower(n) ];
    
  • Maple
    See link.
  • Mathematica
    a = {}; Do[If[Apply[GCD, Transpose[FactorInteger[n]][[2]]] == 1, a = Append[a, n]], {n, 2, 200}];
    Select[Range[2,200],GCD@@FactorInteger[#][[All,-1]]===1&] (* Michael De Vlieger, Oct 21 2016. Corrected by Gus Wiseman, Jan 14 2017 *)
  • PARI
    is(n)=!ispower(n)&&n>1 \\ Charles R Greathouse IV, Jul 01 2013
    
  • Python
    from sympy import mobius, integer_nthroot
    def A007916(n):
        def f(x): return int(n+1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 13 2024

Formula

A075802(a(n)) = 0. - Reinhard Zumkeller, Mar 19 2009
Gcd(exponents in prime factorization of a(n)) = 1, cf. A124010. - Reinhard Zumkeller, Apr 13 2012
a(n) ~ n. - Charles R Greathouse IV, Jul 01 2013
A052409(a(n)) = 1. - Ridouane Oudra, Nov 23 2024

Extensions

More terms from Henry Bottomley, Sep 12 2000
Edited by Charles R Greathouse IV, Mar 18 2010
Further edited by N. J. A. Sloane, Nov 09 2016