cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007923 Lengths increase by 1, digits cycle through positive digits.

Original entry on oeis.org

1, 23, 456, 7891, 23456, 789123, 4567891, 23456789, 123456789, 1234567891, 23456789123, 456789123456, 7891234567891, 23456789123456, 789123456789123, 4567891234567891, 23456789123456789, 123456789123456789
Offset: 1

Views

Author

R. Muller

Keywords

References

  • C. Ashbacher, Some Problems Concerning the Smarandache Deconstructive Sequence, J. Recreational Mathematics, Vol. 29, No. 2, pages 82-84.
  • K. Atanassov, On the 4th Smarandache Problem, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 1, 33-35.

Crossrefs

Programs

  • Mathematica
    A007923[n_Integer] := Module[{result = 0},Do[ result += (Mod[(n*(n - 1)/2 + i - 1), 9] + 1) * 10^(n - i),{i, 1, n}   ]; result ]; Table[A007923[n],{n,18}] (* James C. McMahon, Dec 04 2023 *)
  • PARI
    a(n)=my(m=(n*(n+1)/2-1)%9); sum(k=0,n-1,10^k*((m-k)%9+1))

Formula

a(n) = (10^9+1) a(n-9) - 10^9 a(n-18), n>=18. - corrected by Michael Somos, Sep 28 2002
a(n) = Sum_{i=1..n} ((n*(n-1)/2+i-1 mod 9)+1)*10^(n-i). - Vedran Glisic, Apr 08 2011
a(n) = floor(10^(n*(n+1)/2)*123456789/999999999) - 10^n*floor(10^(n*(n-1)/2)*123456789/999999999). - Néstor Jofré, Jun 03 2017