cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A050234 Primes in A007923.

Original entry on oeis.org

23, 4567891, 23456789, 1234567891, 23456789123456789, 23456789123456789123, 4567891234567891234567891, 1234567891234567891234567891, 7891234567891234567891234567891
Offset: 1

Views

Author

Keywords

A075766 Numbers k such that A007923(k) is prime.

Original entry on oeis.org

2, 7, 8, 10, 17, 20, 25, 28, 31, 38, 61, 62, 355, 4690, 4772, 8162, 10523, 14716, 32114, 117712
Offset: 1

Views

Author

Jason Earls, Oct 09 2002

Keywords

Comments

SDS(355) certified prime with Primo.
No more terms <= 8000. - XU Pingya, May 30 2017

Crossrefs

Cf. A007923.

Programs

  • PARI
    isok(n) = my(m=(n*(n+1)/2-1)%9+1); isprime(sum(k=0, n-1, 10^k*((m-k-1)%9+1))); \\ Michel Marcus, May 30 2017

Extensions

a(14)-a(15) from XU Pingya, May 30 2017
a(16)-a(18) from Michael S. Branicky, Jun 22 2023
a(19) from Michael S. Branicky, Nov 18 2024
a(20) from Michael S. Branicky, Jun 12 2025

A066547 Let N = 123456789101112131415161718..., the concatenation of the natural numbers. a(n) is the n-digit number formed from the digits of N starting from the {n(n-1)/2 +1}th digit. Omit any leading zeros.

Original entry on oeis.org

1, 23, 456, 7891, 1112, 131415, 1617181, 92021222, 324252627, 2829303132, 33343536373, 839404142434, 4454647484950, 51525354555657, 585960616263646, 5666768697071727, 37475767778798081, 828384858687888990, 9192939495969798991, 101102103104105106, 107108109110111112113
Offset: 1

Views

Author

Amarnath Murthy, Dec 16 2001

Keywords

Examples

			1, 23, 456, 7891, 01112, 131415, 1617181, 92021222, 3... becomes 1, 23, 456, 7891, 1112, 131415, 1617181, 92021222, ...
		

Crossrefs

Programs

  • Mathematica
    d = Flatten[IntegerDigits /@ Range[90]]; Table[FromDigits[Take[d, {n(n + 1)/2 + 1, (n + 1)(n + 2)/2}]], {n, 0, 17}] (* Robert G. Wilson v, Nov 22 2004 *)
  • PARI
    N=[]; k=0; for(n=1,20, while(#NM. F. Hasler, May 08 2014

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Dec 18 2001

A001369 Blocks of increasing length using 1,2,3,...,9,10; omit leading 0's.

Original entry on oeis.org

1, 23, 456, 7891, 1234, 567891, 123456, 78910123, 456789101, 2345678910, 12345678910, 123456789101, 2345678910123, 45678910123456, 789101234567891, 123456789101234, 56789101234567891, 12345678910123456, 7891012345678910123, 45678910123456789101
Offset: 1

Views

Author

Keywords

Comments

It appears that the first digit repeats 1, 2, 4, 7, 1, 5, 1, 7, 4, 2, 1. - T. D. Noe, Apr 05 2011

Crossrefs

Programs

  • Mathematica
    nn = 20; d = Flatten[Table[{1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0}, {Ceiling[nn (nn + 1)/22]}]]; Table[e = (n + 1) n/2; s = e - n + 1; FromDigits[d[[s ;; e]]], {n, nn}] (* T. D. Noe, Apr 05 2011 *)
  • PARI
    N=[]; k=Mod(-1,10); for(n=1, 20, while(#NM. F. Hasler, May 08 2014

A081549 a(1) = 1; for n > 1, a(n) > a(n-1) is the smallest number such that the concatenation a(1)a(2)a(3)... forms a cyclic concatenation of 123456789 (of nonzero digits).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 34, 56, 78, 91, 234, 567, 891, 2345, 6789, 12345, 67891, 234567, 891234, 5678912, 34567891, 234567891, 2345678912, 3456789123, 4567891234, 5678912345, 6789123456, 7891234567, 8912345678, 9123456789
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2003

Keywords

Crossrefs

Cf. A165307 (non-monotonic version), A007923 (version with strictly increasing length).

Programs

  • Mathematica
    a = {1}; c = 0; Do[c = 10 c + Mod[n, 9] + 1; If[c > a[[-1]], AppendTo[a, c]; c = 0], {n, 170}]; a (* Ivan Neretin, Aug 14 2015 *)

Extensions

Corrected and extended by Sean A. Irvine, Apr 18 2010

A100814 Digits 9 to 0 are written in order with increasing number of digits for each member of the sequence. Leading zeros are counted, but are not written down.

Original entry on oeis.org

9, 87, 654, 3210, 98765, 432109, 8765432, 10987654, 321098765, 4321098765, 43210987654, 321098765432, 1098765432109, 87654321098765, 432109876543210, 9876543210987654, 32109876543210987, 654321098765432109
Offset: 1

Views

Author

Parthasarathy Nambi, Jan 05 2005

Keywords

Comments

This is similar to A062273 and A007923

Examples

			The first number in the sequence is 9.
The second number in the sequence is 87.
The third number in the sequence is 654.
		

References

  • C. Ashbacher, "Some problems concerning the Smarandache deconstructive sequence", Journal of Recreational Mathematics, vol. 29(2), 82-84 (1998)
  • Russell Euler and Jawad Sadek, "Some divisibility patterns in the Smarandache deconstructive sequence", Journal of Recreational Mathematics, vol. 31(1), 12-14 (2002-2003)

Crossrefs

Programs

  • Mathematica
    With[{c=PadRight[{},250,Range[9,0,-1]]},Table[FromDigits[Take[c,{(n(n+1))/2+1,((n+1)(n+2))/2}]],{n,0,20}]] (* Harvey P. Dale, Jan 17 2017 *)

Extensions

More terms from Robert G. Wilson v and Lior Manor, Jan 14 2005
Showing 1-6 of 6 results.