A007932 Numbers that contain only 1's, 2's and 3's.
1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, 121, 122, 123, 131, 132, 133, 211, 212, 213, 221, 222, 223, 231, 232, 233, 311, 312, 313, 321, 322, 323, 331, 332, 333, 1111, 1112, 1113, 1121, 1122, 1123, 1131, 1132, 1133, 1211, 1212, 1213, 1221
Offset: 1
Examples
a(100) = 3131. a(10^3) = 323231. a(10^4) = 111123331. a(10^5) = 11231311131. a(10^6) = 1212133131231. a(10^7) = 123133223331331. a(10^8) = 13221311111312131. a(10^9) = 2113123122313232231. - _Hieronymus Fischer_, Jun 06 2012
References
- K. Atanassov, On the 97th, 98th and the 99th Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 3, 89-93.
- A. Salomaa, Formal Languages, Academic Press, 1973. pages 90-91. [From Chris Gaconnet (gaconnet(AT)gmail.com), May 27 2009]
Links
- Hieronymus Fischer, Table of n, a(n) for n = 1..10000
- K. Atanassov, On Some of Smarandache's Problems
- EMIS, Mirror site for Southwest Journal of Pure and Applied Mathematics
- Robert R. Forslund, A Logical Alternative to the Existing Positional Number System, Southwest Journal of Pure and Applied Mathematics. Vol. 1 1995 pp. 27-29.
- James E. Foster, A Number System without a Zero-Symbol, Mathematics Magazine, Vol. 21, No. 1. (1947), pp. 39-41.
- F. Smarandache, Only Problems, Not Solutions!.
- Wikipedia, Bijective numeration
- Index entries for 10-automatic sequences.
Crossrefs
Programs
-
Mathematica
NextNbr[n_] := Block[{d = IntegerDigits[n + 1], l}, l = Length[d]; While[l != 1, If[ d[[l]] > 3, d[[l - 1]]++; d[[l]] = 1]; l-- ]; If[ d[[1]] > 3, d[[1]] = 11]; FromDigits[d]]; NestList[ NextNbr, 1, 51] Table[FromDigits/@Tuples[{1,2,3},n],{n,4}]//Flatten (* Harvey P. Dale, Mar 29 2018 *)
-
PARI
a(n) = my (w=3); while (n>w, n -= w; w *= 3); my (d=digits(w+n-1, 3)); d[1] = 0; fromdigits(d) + (10^(#d-1)-1)/9 \\ Rémy Sigrist, Aug 28 2018
Formula
From Hieronymus Fischer, May 30 2012 and Jun 08 2012: (Start)
The formulas are designed to calculate base-10 numbers only using the digits 1, 2, 3.
a(n) = Sum_{j=0..m-1} (1 + b(j) mod 3)*10^j,
where m = floor(log_3(2*n+1)), b(j) = floor((2*n+1-3^m)/(2*3^j)).
Special values:
a(k*(3^n-1)/2) = k*(10^n-1)/9, k=1,2,3.
a((5*3^n-3)/2) = (4*10^n-1)/3 = 10^n + (10^n-1)/3.
a((3^n-1)/2 - 1) = (10^(n-1)-1)/3, n>1.
Inequalities:
a(n) <= (10^log_3(2*n+1)-1)/9, equality holds for n=(3^k-1)/2, k>0.
a(n) > (3/10)*(10^log_3(2*n+1)-1)/9, n>0.
Lower and upper limits:
lim inf a(n)/10^log_3(2*n) = 1/30, for n --> infinity.
lim sup a(n)/10^log_3(2*n) = 1/9, for n --> infinity.
G.f.: g(x) = (x^(1/2)*(1-x))^(-1) Sum_{j=>0} 10^j*(x^3^j)^(3/2) * (1-x^3^j)*(1 + 2x^3^j + 3x^(2*3^j))/(1 - x^3^(j+1)).
Also: g(x) = (1/(1-x)) Sum_{j>=0} (1 - 4(x^3^j)^3 + 3(x^3^j)^4)*x^3^j*f_j(x)/(1-x^3^j), where f_j(x) = 10^j*x^((3^j-1)/2)/(1-(x^3^j)^3). The f_j obey the recurrence f_0(x) = 1/(1-x^3), f_(j+1)(x) = 10x*f_j(x^3).
Also: g(x) = (1/(1-x))*(h_(3,0)(x) + h_(3,1)(x) + h_(3,2)(x) - 3*h_(3,3)(x)), where h_(3,k)(x) = Sum_{j>=0} 10^j*x^((3^(j+1)-1)/2) * (x^3^j)^k/(1-(x^3^j)^3).
(End)
Extensions
Edited and extended by Robert G. Wilson v, Dec 14 2002
Crossrefs added by Hieronymus Fischer, Jun 06 2012
Comments