cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A000027 The positive integers. Also called the natural numbers, the whole numbers or the counting numbers, but these terms are ambiguous.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Keywords

Comments

For some authors, the terms "natural numbers" and "counting numbers" include 0, i.e., refer to the nonnegative integers A001477; the term "whole numbers" frequently also designates the whole set of (signed) integers A001057.
a(n) is smallest positive integer which is consistent with sequence being monotonically increasing and satisfying a(a(n)) = n (cf. A007378).
Inverse Euler transform of A000219.
The rectangular array having A000027 as antidiagonals is the dispersion of the complement of the triangular numbers, A000217 (which triangularly form column 1 of this array). The array is also the transpose of A038722. - Clark Kimberling, Apr 05 2003
For nonzero x, define f(n) = floor(nx) - floor(n/x). Then f=A000027 if and only if x=tau or x=-tau. - Clark Kimberling, Jan 09 2005
Numbers of form (2^i)*k for odd k (i.e., n = A006519(n)*A000265(n)); thus n corresponds uniquely to an ordered pair (i,k) where i=A007814, k=A000265 (with A007814(2n)=A001511(n), A007814(2n+1)=0). - Lekraj Beedassy, Apr 22 2006
If the offset were changed to 0, we would have the following pattern: a(n)=binomial(n,0) + binomial(n,1) for the present sequence (number of regions in 1-space defined by n points), A000124 (number of regions in 2-space defined by n straight lines), A000125 (number of regions in 3-space defined by n planes), A000127 (number of regions in 4-space defined by n hyperplanes), A006261, A008859, A008860, A008861, A008862 and A008863, where the last six sequences are interpreted analogously and in each "... by n ..." clause an offset of 0 has been assumed, resulting in a(0)=1 for all of them, which corresponds to the case of not cutting with a hyperplane at all and therefore having one region. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
Define a number of points on a straight line to be in general arrangement when no two points coincide. Then these are the numbers of regions defined by n points in general arrangement on a straight line, when an offset of 0 is assumed. For instance, a(0)=1, since using no point at all leaves one region. The sequence satisfies the recursion a(n) = a(n-1) + 1. This has the following geometrical interpretation: Suppose there are already n-1 points in general arrangement, thus defining the maximal number of regions on a straight line obtainable by n-1 points, and now one more point is added in general arrangement. Then it will coincide with no other point and act as a dividing wall thereby creating one new region in addition to the a(n-1)=(n-1)+1=n regions already there, hence a(n)=a(n-1)+1. Cf. the comments on A000124 for an analogous interpretation. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
The sequence a(n)=n (for n=1,2,3) and a(n)=n+1 (for n=4,5,...) gives to the rank (minimal cardinality of a generating set) for the semigroup I_n\S_n, where I_n and S_n denote the symmetric inverse semigroup and symmetric group on [n]. - James East, May 03 2007
The sequence a(n)=n (for n=1,2), a(n)=n+1 (for n=3) and a(n)=n+2 (for n=4,5,...) gives the rank (minimal cardinality of a generating set) for the semigroup PT_n\T_n, where PT_n and T_n denote the partial transformation semigroup and transformation semigroup on [n]. - James East, May 03 2007
"God made the integers; all else is the work of man." This famous quotation is a translation of "Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk," spoken by Leopold Kronecker in a lecture at the Berliner Naturforscher-Versammlung in 1886. Possibly the first publication of the statement is in Heinrich Weber's "Leopold Kronecker," Jahresberichte D.M.V. 2 (1893) 5-31. - Clark Kimberling, Jul 07 2007
Binomial transform of A019590, inverse binomial transform of A001792. - Philippe Deléham, Oct 24 2007
Writing A000027 as N, perhaps the simplest one-to-one correspondence between N X N and N is this: f(m,n) = ((m+n)^2 - m - 3n + 2)/2. Its inverse is given by I(k)=(g,h), where g = k - J(J-1)/2, h = J + 1 - g, J = floor((1 + sqrt(8k - 7))/2). Thus I(1)=(1,1), I(2)=(1,2), I(3)=(2,1) and so on; the mapping I fills the first-quadrant lattice by successive antidiagonals. - Clark Kimberling, Sep 11 2008
a(n) is also the mean of the first n odd integers. - Ian Kent, Dec 23 2008
Equals INVERTi transform of A001906, the even-indexed Fibonacci numbers starting (1, 3, 8, 21, 55, ...). - Gary W. Adamson, Jun 05 2009
These are also the 2-rough numbers: positive integers that have no prime factors less than 2. - Michael B. Porter, Oct 08 2009
Totally multiplicative sequence with a(p) = p for prime p. Totally multiplicative sequence with a(p) = a(p-1) + 1 for prime p. - Jaroslav Krizek, Oct 18 2009
Triangle T(k,j) of natural numbers, read by rows, with T(k,j) = binomial(k,2) + j = (k^2-k)/2 + j where 1 <= j <= k. In other words, a(n) = n = binomial(k,2) + j where k is the largest integer such that binomial(k,2) < n and j = n - binomial(k,2). For example, T(4,1)=7, T(4,2)=8, T(4,3)=9, and T(4,4)=10. Note that T(n,n)=A000217(n), the n-th triangular number. - Dennis P. Walsh, Nov 19 2009
Hofstadter-Conway-like sequence (see A004001): a(n) = a(a(n-1)) + a(n-a(n-1)) with a(1) = 1, a(2) = 2. - Jaroslav Krizek, Dec 11 2009
a(n) is also the dimension of the irreducible representations of the Lie algebra sl(2). - Leonid Bedratyuk, Jan 04 2010
Floyd's triangle read by rows. - Paul Muljadi, Jan 25 2010
Number of numbers between k and 2k where k is an integer. - Giovanni Teofilatto, Mar 26 2010
Generated from a(2n) = r*a(n), a(2n+1) = a(n) + a(n+1), r = 2; in an infinite set, row 2 of the array shown in A178568. - Gary W. Adamson, May 29 2010
1/n = continued fraction [n]. Let barover[n] = [n,n,n,...] = 1/k. Then k - 1/k = n. Example: [2,2,2,...] = (sqrt(2) - 1) = 1/k, with k = (sqrt(2) + 1). Then 2 = k - 1/k. - Gary W. Adamson, Jul 15 2010
Number of n-digit numbers the binary expansion of which contains one run of 1's. - Vladimir Shevelev, Jul 30 2010
From Clark Kimberling, Jan 29 2011: (Start)
Let T denote the "natural number array A000027":
1 2 4 7 ...
3 5 8 12 ...
6 9 13 18 ...
10 14 19 25 ...
T(n,k) = n+(n+k-2)*(n+k-1)/2. See A185787 for a list of sequences based on T, such as rows, columns, diagonals, and sub-arrays. (End)
The Stern polynomial B(n,x) evaluated at x=2. See A125184. - T. D. Noe, Feb 28 2011
The denominator in the Maclaurin series of log(2), which is 1 - 1/2 + 1/3 - 1/4 + .... - Mohammad K. Azarian, Oct 13 2011
As a function of Bernoulli numbers B_n (cf. A027641: (1, -1/2, 1/6, 0, -1/30, 0, 1/42, ...)): let V = a variant of B_n changing the (-1/2) to (1/2). Then triangle A074909 (the beheaded Pascal's triangle) * [1, 1/2, 1/6, 0, -1/30, ...] = the vector [1, 2, 3, 4, 5, ...]. - Gary W. Adamson, Mar 05 2012
Number of partitions of 2n+1 into exactly two parts. - Wesley Ivan Hurt, Jul 15 2013
Integers n dividing u(n) = 2u(n-1) - u(n-2); u(0)=0, u(1)=1 (Lucas sequence A001477). - Thomas M. Bridge, Nov 03 2013
For this sequence, the generalized continued fraction a(1)+a(1)/(a(2)+a(2)/(a(3)+a(3)/(a(4)+...))), evaluates to 1/(e-2) = A194807. - Stanislav Sykora, Jan 20 2014
Engel expansion of e-1 (A091131 = 1.71828...). - Jaroslav Krizek, Jan 23 2014
a(n) is the number of permutations of length n simultaneously avoiding 213, 231 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
a(n) is also the number of permutations simultaneously avoiding 213, 231 and 321 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl, Aug 07 2014
a(n) = least k such that 2*Pi - Sum_{h=1..k} 1/(h^2 - h + 3/16) < 1/n. - Clark Kimberling, Sep 28 2014
a(n) = least k such that Pi^2/6 - Sum_{h=1..k} 1/h^2 < 1/n. - Clark Kimberling, Oct 02 2014
Determinants of the spiral knots S(2,k,(1)). a(k) = det(S(2,k,(1))). These knots are also the torus knots T(2,k). - Ryan Stees, Dec 15 2014
As a function, the restriction of the identity map on the nonnegative integers {0,1,2,3...}, A001477, to the positive integers {1,2,3,...}. - M. F. Hasler, Jan 18 2015
See also A131685(k) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^k+ k) / k! takes integral values for all i>=0: For k=1, A131685(k)=1, which implies that this is a well defined integer sequence. - Alexander R. Povolotsky, Apr 24 2015
a(n) is the number of compositions of n+2 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
Does not satisfy Benford's law [Berger-Hill, 2017] - N. J. A. Sloane, Feb 07 2017
Parametrization for the finite multisubsets of the positive integers, where, for p_j the j-th prime, n = Product_{j} p_j^(e_j) corresponds to the multiset containing e_j copies of j ('Heinz encoding' -- see A056239, A003963, A289506, A289507, A289508, A289509). - Christopher J. Smyth, Jul 31 2017
The arithmetic function v_1(n,1) as defined in A289197. - Robert Price, Aug 22 2017
For n >= 3, a(n)=n is the least area that can be obtained for an irregular octagon drawn in a square of n units side, whose sides are parallel to the axes, with 4 vertices that coincide with the 4 vertices of the square, and the 4 remaining vertices having integer coordinates. See Affaire de Logique link. - Michel Marcus, Apr 28 2018
a(n+1) is the order of rowmotion on a poset defined by a disjoint union of chains of length n. - Nick Mayers, Jun 08 2018
Number of 1's in n-th generation of 1-D Cellular Automata using Rules 50, 58, 114, 122, 178, 186, 206, 220, 238, 242, 250 or 252 in the Wolfram numbering scheme, started with a single 1. - Frank Hollstein, Mar 25 2019
(1, 2, 3, 4, 5, ...) is the fourth INVERT transform of (1, -2, 3, -4, 5, ...). - Gary W. Adamson, Jul 15 2019

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 1.
  • T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990, page 25.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 22.
  • W. Fulton and J. Harris, Representation theory: a first course, (1991), page 149. [From Leonid Bedratyuk, Jan 04 2010]
  • I. S. Gradstein and I. M. Ryshik, Tables of series, products, and integrals, Volume 1, Verlag Harri Deutsch, 1981.
  • R. E. Schwartz, You Can Count on Monsters: The First 100 numbers and Their Characters, A. K. Peters and MAA, 2010.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A001477 = nonnegative numbers.
Partial sums of A000012.
Cf. A026081 = integers in reverse alphabetical order in U.S. English, A107322 = English name for number and its reverse have the same number of letters, A119796 = zero through ten in alphabetical order of English reverse spelling, A005589, etc. Cf. A185787 (includes a list of sequences based on the natural number array A000027).
Cf. Boustrophedon transforms: A000737, A231179;
Cf. A038722 (mirrored when seen as triangle), A056011 (boustrophedon).
Cf. A048993, A048994, A000110 (see the Feb 03 2015 formula).

Programs

Formula

a(2k+1) = A005408(k), k >= 0, a(2k) = A005843(k), k >= 1.
Multiplicative with a(p^e) = p^e. - David W. Wilson, Aug 01 2001
Another g.f.: Sum_{n>0} phi(n)*x^n/(1-x^n) (Apostol).
When seen as an array: T(k, n) = n+1 + (k+n)*(k+n+1)/2. Main diagonal is 2n*(n+1)+1 (A001844), antidiagonal sums are n*(n^2+1)/2 (A006003). - Ralf Stephan, Oct 17 2004
Dirichlet generating function: zeta(s-1). - Franklin T. Adams-Watters, Sep 11 2005
G.f.: x/(1-x)^2. E.g.f.: x*exp(x). a(n)=n. a(-n)=-a(n).
Series reversion of g.f. A(x) is x*C(-x)^2 where C(x) is the g.f. of A000108. - Michael Somos, Sep 04 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - 4*u*v. - Michael Somos, Oct 03 2006
Convolution of A000012 (the all-ones sequence) with itself. - Tanya Khovanova, Jun 22 2007
a(n) = 2*a(n-1)-a(n-2); a(1)=1, a(2)=2. a(n) = 1+a(n-1). - Philippe Deléham, Nov 03 2008
a(n) = A000720(A000040(n)). - Juri-Stepan Gerasimov, Nov 29 2009
a(n+1) = Sum_{k=0..n} A101950(n,k). - Philippe Deléham, Feb 10 2012
a(n) = Sum_{d | n} phi(d) = Sum_{d | n} A000010(d). - Jaroslav Krizek, Apr 20 2012
G.f.: x * Product_{j>=0} (1+x^(2^j))^2 = x * (1+2*x+x^2) * (1+2*x^2+x^4) * (1+2*x^4+x^8) * ... = x + 2x^2 + 3x^3 + ... . - Gary W. Adamson, Jun 26 2012
a(n) = det(binomial(i+1,j), 1 <= i,j <= n). - Mircea Merca, Apr 06 2013
E.g.f.: x*E(0), where E(k) = 1 + 1/(x - x^3/(x^2 + (k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 03 2013
From Wolfdieter Lang, Oct 09 2013: (Start)
a(n) = Product_{k=1..n-1} 2*sin(Pi*k/n), n > 1.
a(n) = Product_{k=1..n-1} (2*sin(Pi*k/(2*n)))^2, n > 1.
These identities are used in the calculation of products of ratios of lengths of certain lines in a regular n-gon. For the first identity see the Gradstein-Ryshik reference, p. 62, 1.392 1., bringing the first factor there to the left hand side and taking the limit x -> 0 (L'Hôpital). The second line follows from the first one. Thanks to Seppo Mustonen who led me to consider n-gon lengths products. (End)
a(n) = Sum_{j=0..k} (-1)^(j-1)*j*binomial(n,j)*binomial(n-1+k-j,k-j), k>=0. - Mircea Merca, Jan 25 2014
a(n) = A052410(n)^A052409(n). - Reinhard Zumkeller, Apr 06 2014
a(n) = Sum_{k=1..n^2+2*n} 1/(sqrt(k)+sqrt(k+1)). - Pierre CAMI, Apr 25 2014
a(n) = floor(1/sin(1/n)) = floor(cot(1/(n+1))) = ceiling(cot(1/n)). - Clark Kimberling, Oct 08 2014
a(n) = floor(1/(log(n+1)-log(n))). - Thomas Ordowski, Oct 10 2014
a(k) = det(S(2,k,1)). - Ryan Stees, Dec 15 2014
a(n) = 1/(1/(n+1) + 1/(n+1)^2 + 1/(n+1)^3 + ...). - Pierre CAMI, Jan 22 2015
a(n) = Sum_{m=0..n-1} Stirling1(n-1,m)*Bell(m+1), for n >= 1. This corresponds to Bell(m+1) = Sum_{k=0..m} Stirling2(m, k)*(k+1), for m >= 0, from the fact that Stirling2*Stirling1 = identity matrix. See A048993, A048994 and A000110. - Wolfdieter Lang, Feb 03 2015
a(n) = Sum_{k=1..2n-1}(-1)^(k+1)*k*(2n-k). In addition, surprisingly, a(n) = Sum_{k=1..2n-1}(-1)^(k+1)*k^2*(2n-k)^2. - Charlie Marion, Jan 05 2016
G.f.: x/(1-x)^2 = (x * r(x) *r(x^3) * r(x^9) * r(x^27) * ...), where r(x) = (1 + x + x^2)^2 = (1 + 2x + 3x^2 + 2x^3 + x^4). - Gary W. Adamson, Jan 11 2017
a(n) = floor(1/(Pi/2-arctan(n))). - Clark Kimberling, Mar 11 2020
a(n) = Sum_{d|n} mu(n/d)*sigma(d). - Ridouane Oudra, Oct 03 2020
a(n) = Sum_{k=1..n} phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 09 2021
a(n) = S(n-1, 2), with the Chebyshev S-polynomials A049310. - Wolfdieter Lang, Mar 09 2023
From Peter Bala, Nov 02 2024: (Start)
For positive integer m, a(n) = (1/m)* Sum_{k = 1..2*m*n-1} (-1)^(k+1) * k * (2*m*n - k) = (1/m) * Sum_{k = 1..2*m*n-1} (-1)^(k+1) * k^2 * (2*m*n - k)^2 (the case m = 1 is given above).
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * k * binomial(3*n+k, 2*k). (End)

Extensions

Links edited by Daniel Forgues, Oct 07 2009.

A052382 Numbers without 0 in the decimal expansion, colloquial 'zeroless numbers'.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 111, 112, 113
Offset: 1

Views

Author

Henry Bottomley, Mar 13 2000

Keywords

Comments

The entries 1 to 79 match the corresponding subsequence of A043095, but then 81, 91-98, 100, 102, etc. are only in one of the two sequences. - R. J. Mathar, Oct 13 2008
Complement of A011540; A168046(a(n)) = 1; A054054(a(n)) > 0; A007602, A038186, A038618, A052041, A052043, and A052045 are subsequences. - Reinhard Zumkeller, Apr 25 2012, Apr 07 2011, Dec 01 2009
a(n) = n written in base 9 where zeros are not allowed but nines are. The nine distinct digits used are 1, 2, 3, ..., 9 instead of 0, 1, 2, ..., 8. To obtain this sequence from the "canonical" base 9 sequence with zeros allowed, just replace any 0 with a 9 and then subtract one from the group of digits situated on the left. For example, 9^3 = 729 (10) (in base 10) = 1000 (9) (in base 9) = 889 (9-{0}) (in base 9 without zeros) because 100 (9) = [9-1]9 = 89 (9-{0}) and thus 1000 (9) = [89-1]9 = 889 (9-{0}). - Robin Garcia, Jan 15 2014
From Hieronymus Fischer, May 28 2014: (Start)
Inversion: Given a term m, the index n such that a(n) = m can be calculated by A052382_inverse(m) = m - sum_{1<=j<=k} floor(m/10^j)*9^(j-1), where k := floor(log_10(m)) [see Prog section for an implementation in Smalltalk].
Example 1: A052382_inverse(137) = 137 - (floor(137/10) + floor(137/100)*9) = 137 - (13*1 + 1*9) = 137 - 22 = 115.
Example 2: A052382_inverse(4321) = 4321 - (floor(4321/10) + floor(4321/100)*9 + floor(4321/1000)*81) = 4321 - (432*1 + 43*9 + 4*81) = 4321 - (432 + 387 + 324) = 3178. (End)
The sum of the reciprocals of these numbers from a(1)=1 to infinity, called the Kempner series, is convergent towards a limit: 23.103447... whose decimal expansion is in A082839. - Bernard Schott, Feb 23 2019
Integer n > 0 is encoded using bijective base-9 numeration, see Wikipedia link below. - Alois P. Heinz, Feb 16 2020

Examples

			For k >= 0, a(10^k) = (1, 11, 121, 1331, 14641, 162151, 1783661, 19731371, ...) = A325203(k). - _Hieronymus Fischer_, May 30 2012 and Jun 06 2012; edited by _M. F. Hasler_, Jan 13 2020
		

References

  • Paul Halmos, "Problems for Mathematicians, Young and Old", Dolciani Mathematical Expositions, 1991, p. 258.

Crossrefs

Cf. A004719, A052040, different from A067251.
Column k=9 of A214676.
Cf. A011540 (complement), A043489, A054054, A168046.
Cf. A052383 (without 1), A052404 (without 2), A052405 (without 3), A052406 (without 4), A052413 (without 5), A052414 (without 6), A052419 (without 7), A052421 (without 8), A007095 (without 9).
Zeroless numbers in some other bases <= 10: A000042 (base 2), A032924 (base 3), A023705 (base 4), A248910 (base 6), A255805 (base 8), A255808 (base 9).
Cf. A082839 (sum of reciprocals).
Cf. A038618 (subset of primes)

Programs

  • Haskell
    a052382 n = a052382_list !! (n-1)
    a052382_list = iterate f 1 where
    f x = 1 + if r < 9 then x else 10 * f x' where (x', r) = divMod x 10
    -- Reinhard Zumkeller, Mar 08 2015, Apr 07 2011
    
  • Magma
    [ n: n in [1..114] | not 0 in Intseq(n) ]; // Bruno Berselli, May 28 2011
    
  • Maple
    a:= proc(n) local d, l, m; m:= n; l:= NULL;
          while m>0 do d:= irem(m, 9, 'm');
            if d=0 then d:=9; m:= m-1 fi;
            l:= d, l
          od; parse(cat(l))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 11 2015
    is_zeroless := n -> not is(0 in convert(n, base, 10)):
    select(is_zeroless, [seq(1..113)]);  # Peter Luschny, Jun 20 2025
  • Mathematica
    A052382 = Select[Range[100], DigitCount[#, 10, 0] == 0 &] (* Alonso del Arte, Mar 10 2011 *)
  • PARI
    select( {is_A052382(n)=n&&vecmin(digits(n))}, [0..111]) \\ actually: is_A052382 = (bool) A054054. - M. F. Hasler, Jan 23 2013, edited Jan 13 2020
    
  • PARI
    a(n) = for (w=0, oo, if (n >= 9^w, n -= 9^w, return ((10^w-1)/9 + fromdigits(digits(n, 9))))) \\ Rémy Sigrist, Jul 26 2017
    
  • PARI
    apply( {A052382(n,L=logint(n,9))=fromdigits(digits(n-9^L>>3,9))+10^L\9}, [1..100])
    next_A052382(n, d=digits(n+=1))={for(i=1, #d, d[i]|| return(n-n%(d=10^(#d-i+1))+d\9)); n} \\ least a(k) > n. Used in A038618.
    ( {A052382_vec(n,M=1)=M--;vector(n, i, M=next_A052382(M))} )(99) \\ n terms >= M
    \\ See OEIS Wiki page (cf. LINKS) for more programs. - M. F. Hasler, Jan 11 2020
    
  • Python
    A052382 = [n for n in range(1,10**5) if not str(n).count('0')]
    # Chai Wah Wu, Aug 26 2014
    
  • Python
    from sympy import integer_log
    def A052382(n):
        m = integer_log(k:=(n<<3)+1,9)[0]
        return sum((1+(k-9**m)//(9**j<<3)%9)*10**j for j in range(m)) # Chai Wah Wu, Jun 27 2025
  • Smalltalk
    A052382
    "Answers the n-th term of A052382, where n is the receiver."
    ^self zerofree: 10
    A052382_inverse
    "Answers that index n which satisfy A052382(n) = m, where m is the receiver.”
    ^self zerofree_inverse: 10
    zerofree: base
    "Answers the n-th zerofree number in base base, where n is the receiver. Valid for base > 2.
    Usage: n zerofree: b [b = 10 for this sequence]
    Answer: a(n)"
    | n m s c bi ci d |
    n := self.
    c := base - 1.
    m := (base - 2) * n + 1 integerFloorLog: c.
    d := n - (((c raisedToInteger: m) - 1)//(base - 2)).
    bi := 1.
    ci := 1.
    s := 0.
    1 to: m
    do:
    [:i |
    s := (d // ci \\ c + 1) * bi + s.
    bi := base * bi.
    ci := c * ci].
    ^s
    zerofree_inverse: base
    "Answers the index n such that the n-th zerofree number in base base is = m, where m is the receiver. Valid for base > 2.
    Usage: m zerofree_inverse: b [b = 10 for this sequence]
    Answer: n"
    | m p q s |
    m := self.
    s := 0.
    p := base.
    q := 1.
    [p < m] whileTrue:
    [s := m // p * q + s.
    p := base * p.
    q := (base - 1) * q].
    ^m - s
    "by Hieronymus Fischer, May 28 2014"
    
  • sh
    seq 0 1000 | grep -v 0; # Joerg Arndt, May 29 2011
    

Formula

a(n+1) = f(a(n)) with f(x) = 1 + if x mod 10 < 9 then x else 10*f([x/10]). - Reinhard Zumkeller, Nov 15 2009
From Hieronymus Fischer, Apr 30, May 30, Jun 08 2012, Feb 17 2019: (Start)
a(n) = Sum_{j=0..m-1} (1 + b(j) mod 9)*10^j, where m = floor(log_9(8*n + 1)), b(j) = floor((8*n + 1 - 9^m)/(8*9^j)).
Also: a(n) = Sum_{j=0..m-1} (1 + A010878(b(j)))*10^j.
a(9*n + k) = 10*a(n) + k, k=1..9.
Special values:
a(k*(9^n - 1)/8) = k*(10^n - 1)/9, k=1..9.
a((17*9^n - 9)/8) = 2*10^n - 1.
a((9^n - 1)/8 - 1) = 10^(n-1) - 1, n > 1.
Inequalities:
a(n) <= (1/9)*((8*n+1)^(1/log_10(9)) - 1), equality holds for n=(9^k-1)/8, k>0.
a(n) > (1/10)*((8*n+1)^(1/log_10(9)) - 1), n > 0.
Lower and upper limits:
lim inf a(n)/10^log_9(8*n) = 1/10, for n -> infinity.
lim inf a(n)/n^(1/log_10(9)) = 8^(1/log_10(9))/10, for n -> infinity.
lim sup a(n)/10^log_9(8*n) = 1/9, for n -> infinity.
lim sup a(n)/n^(1/log_10(9)) = 8^(1/log_10(9))/9, for n -> infinity.
G.f.: g(x) = (x^(1/8)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(9/8)*(1 - 10z(j)^9 + 9z(j)^10)/((1-z(j))(1-z(j)^9)), where z(j) = x^9^j.
Also: g(x) = (1/(1-x)) Sum_{j>=0} (1 - 10(x^9^j)^9 + 9(x^9^j)^10)*x^9^j*f_j(x)/(1-x^9^j), where f_j(x) = 10^j*x^((9^j-1)/8)/(1-(x^9^j)^9). Here, the f_j obey the recurrence f_0(x) = 1/(1-x^9), f_(j+1)(x) = 10x*f_j(x^9).
Also: g(x) = (1/(1-x))*((Sum{k=0..8} h_(9,k)(x)) - 9*h_(9,9)(x)), where h_(9,k)(x) = Sum_{j>=0} 10^j*x^((9^(j+1)-1)/8)*x^(k*9^j)/(1-x^9^(j+1)).
Generic formulas for analogous sequences with numbers expressed in base p and only using the digits 1, 2, 3, ... d, where 1 < d < p:
a(n) = Sum_{j=0..m-1} (1 + b(j) mod d)*p^j, where m = floor(log_d((d-1)*n+1)), b(j) = floor(((d-1)*n+1-d^m)/((d-1)*d^j)).
Special values:
a(k*(d^n-1)/(d-1)) = k*(10^n-1)/9, k=1..d.
a(d*((2d-1)*d^(n-1)-1)/(d-1)) = ((d+9)*10^n-d)/9 = 10^n + d*(10^n-1)/9.
a((d^n-1)/(d-1)-1) = d*(10^(n-1)-1)/9, n > 1.
Inequalities:
a(n) <= (10^log_d((d-1)*n+1)-1)/9, equality holds for n = (d^k-1)/(d-1), k > 0.
a(n) > (d/10)*(10^log_d((d-1)*n+1)-1)/9, n > 0.
Lower and upper limits:
lim inf a(n)/10^log_d((d-1)*n) = d/90, for n -> infinity.
lim sup a(n)/10^log_d((d-1)*n) = 1/9, for n -> infinity.
G.f.: g(x) = (1/(1-x)) Sum_{j>=0} (1 - (d+1)(x^d^j)^d + d(x^d^j)^(d+1))*x^d^j*f_j(x)/(1-x^d^j), where f_j(x) = p^j*x^((d^j-1)/(d-1))/(1-(x^d^j)^d). Here, the f_j obey the recursion f_0(x) = 1/(1-x^d), f_(j+1)(x) = px*f_j(x^d).
(End)
A052382 = { n | A054054(n) > 0 }. - M. F. Hasler, Jan 23 2013
From Hieronymus Fischer, Feb 20 2019: (Start)
Sum_{n>=1} (-1)^(n+1)/a(n) = 0.696899720...
Sum_{n>=1} 1/a(n)^2 = 1.6269683705819...
Sum_{n>=1} 1/a(n) = 23.1034479... = A082839. This so-called Kempner series converges very slowly. For the calculation of the sum, it is helpful to use the following fraction of partial sums, which converges rapidly:
lim_{n->infinity} (Sum_{k=p(n)..p(n+1)-1} 1/a(k)) / (Sum_{k=p(n-1)..p(n)-1} 1/a(k)) = 9/10, where p(n) = (9^n-1)/8, n > 1.
(End)

Extensions

Typos in formula section corrected by Hieronymus Fischer, May 30 2012
Name clarified by Peter Luschny, Jun 20 2025

A007931 Numbers that contain only 1's and 2's. Nonempty binary strings of length n in lexicographic order.

Original entry on oeis.org

1, 2, 11, 12, 21, 22, 111, 112, 121, 122, 211, 212, 221, 222, 1111, 1112, 1121, 1122, 1211, 1212, 1221, 1222, 2111, 2112, 2121, 2122, 2211, 2212, 2221, 2222, 11111, 11112, 11121, 11122, 11211, 11212, 11221, 11222, 12111, 12112, 12121, 12122
Offset: 1

Views

Author

R. Muller

Keywords

Comments

Numbers written in the dyadic system [Smullyan, Stillwell]. - N. J. A. Sloane, Feb 13 2019
Logic-binary sequence: prefix it by the empty word to have all binary words on the alphabet {1,2}.
The least binary word of length k is a(2^k - 1).
See Mathematica program for logic-binary sequence using (0,1) in place of (1,2); the sequence starts with 0,1,00,01,10. - Clark Kimberling, Feb 09 2012
A007953(a(n)) = A014701(n+1); A007954(a(n)) = A048896(n). - Reinhard Zumkeller, Oct 26 2012
a(n) is n written in base 2 where zeros are not allowed but twos are. The two distinct digits used are 1, 2 instead of 0, 1. To obtain this sequence from the "canonical" base 2 sequence with zeros allowed, just replace any 0 with a 2 and then subtract one from the group of digits situated on the left: (10-->2; 100-->12; 110-->22; 1000-->112; 1010-->122). - Robin Garcia, Jan 31 2014
For numbers made of only two different digits, see also A007088 (digits 0 & 1), A032810 (digits 2 & 3), A032834 (digits 3 & 4), A256290 (digits 4 & 5), A256291 (digits 5 & 6), A256292 (digits 6 & 7), A256340(digits 7 & 8), A256341 (digits 8 & 9), and A032804-A032816 (in other bases). Numbers with exactly two distinct (but unspecified) digits in base 10 are listed in A031955, for other bases in A031948-A031954. - M. F. Hasler, Apr 04 2015
The variant with digits {0, 1} instead of {1, 2} is obtained by deleting all initial digits in sequence A007088 (numbers written in base 2). - M. F. Hasler, Nov 03 2020

Examples

			Positive numbers may not start with 0 in the OEIS, otherwise this sequence would have been written as: 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 00000, 00001, 00010, 00011, 00100, 00101, 00110, 00111, 01000, 01001, 01010, 01011, ...
From _Hieronymus Fischer_, Jun 06 2012: (Start)
a(10)   = 122.
a(100)  = 211212.
a(10^3) = 222212112.
a(10^4) = 1122211121112.
a(10^5) = 2111122121211112.
a(10^6) = 2221211112112111112.
a(10^7) = 11221112112122121111112.
a(10^8) = 12222212122221111211111112.
a(10^9) = 22122211221212211212111111112. (End)
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 2. - From N. J. A. Sloane, Jul 26 2012
  • K. Atanassov, On the 97th, 98th and the 99th Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 3, 89-93.
  • R. M. Smullyan, Theory of Formal Systems, Princeton, 1961.
  • John Stillwell, Reverse Mathematics, Princeton, 2018. See p. 90.

Crossrefs

Cf. A007932 (digits 1-3), A059893, A045670, A052382 (digits 1-9), A059939, A059941, A059943, A032924, A084544, A084545, A046034 (prime digits 2,3,5,7), A089581, A084984 (no prime digits); A001742, A001743, A001744: loops; A202267 (digits 0, 1 and primes), A202268 (digits 1,4,6,8,9), A014261 (odd digits), A014263 (even digits).
Cf. A007088 (digits 0 & 1), A032810 (digits 2 & 3), A032834 (digits 3 & 4), A256290 (digits 4 & 5), A256291 (digits 5 & 6), A256292 (digits 6 & 7), A256340 (digits 7 & 8), A256341 (digits 8 & 9), and A032804-A032816 (in other bases).
Cf. A020450 (primes).

Programs

  • Haskell
    a007931 n = f (n + 1) where
       f x = if x < 2 then 0 else (10 * f x') + m + 1
         where (x', m) = divMod x 2
    -- Reinhard Zumkeller, Oct 26 2012
    
  • Magma
    [n: n in [1..100000] | Set(Intseq(n)) subset {1,2}]; // Vincenzo Librandi, Aug 19 2016
    
  • Maple
    # Maple program to produce the sequence:
    a:= proc(n) local m, r, d; m, r:= n, 0;
          while m>0 do d:= irem(m, 2, 'm');
            if d=0 then d:=2; m:= m-1 fi;
            r:= d, r
          od; parse(cat(r))/10
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 26 2016
    # Maple program to invert this sequence: given a(n), it returns n. - N. J. A. Sloane, Jul 09 2012
    invert7931:=proc(u)
    local t1,t2,i;
    t1:=convert(u,base,10);
    [seq(t1[i]-1,i=1..nops(t1))];
    [op(%),1];
    t2:=convert(%,base,2,10);
    add(t2[i]*10^(i-1),i=1..nops(t2))-1;
    end;
  • Mathematica
    f[n_] := FromDigits[Rest@IntegerDigits[n + 1, 2] + 1]; Array[f, 42] (* Robert G. Wilson v Sep 14 2006 *)
    (* Next, A007931 using (0,1) instead of (1,2) *)
    d[n_] := FromDigits[Rest@IntegerDigits[n + 1, 2] + 1]; Array[FromCharacterCode[ToCharacterCode[ToString[d[#]]] - 1] &, 100] (* Peter J. C. Moses, at request of Clark Kimberling, Feb 09 2012 *)
    Flatten[Table[FromDigits/@Tuples[{1,2},n],{n,5}]] (* Harvey P. Dale, Sep 13 2014 *)
  • PARI
    apply( {A007931(n)=fromdigits([d+1|d<-binary(n+1)[^1]])}, [1..44]) \\ M. F. Hasler, Nov 03 2020, replacing older code from Mar 26 2015
    
  • PARI
    /* inverse function */ apply( {A007931_inv(N)=fromdigits([d-1|d<-digits(N)],2)+2<M. F. Hasler, Nov 09 2020
    
  • Python
    def a(n): return int(bin(n+1)[3:].replace('1', '2').replace('0', '1'))
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, May 13 2021
    
  • Python
    def A007931(n): return int(s:=bin(n+1)[3:])+(10**(len(s))-1)//9 # Chai Wah Wu, Jun 13 2025

Formula

To get a(n), write n+1 in base 2, remove initial 1, add 1 to all remaining digits: e.g., eleven (11) in base 2 is 1011; remove initial 1 and add 1 to remaining digits: a(10)=122. - Clark Kimberling, Mar 11 2003
Conversely, given a(n), to get n: subtract 1 from all digits, prefix with an initial 1, convert this binary number to base 10, subtract 1. E.g., a(6)=22 -> 11 -> 111 -> 7 -> 6. - N. J. A. Sloane, Jul 09 2012
a(n) = A053645(n+1)+A002275(A000523(n)) = a(n-2^b(n))+10^b(n) where b(n) = A059939(n) = floor(log_2(n+1)-1). - Henry Bottomley, Feb 14 2001
From Hieronymus Fischer, Jun 06 2012 and Jun 08 2012: (Start)
The formulas are designed to calculate base-10 numbers only using the digits 1 and 2.
a(n) = Sum_{j=0..m-1} (1 + b(j) mod 2)*10^j, where m = floor(log_2(n+1)), b(j) = floor((n+1-2^m)/(2^j)).
Special values:
a(k*(2^n-1)) = k*(10^n-1)/9, k= 1,2.
a(3*2^n-2) = (11*10^n-2)/9 = 10^n+2*(10^n-1)/9.
a(2^n-2) = 2*(10^(n-1)-1)/9, n>1.
Inequalities:
a(n) <= (10^log_2(n+1)-1)/9, equality holds for n=2^k-1, k>0.
a(n) > (2/10)*(10^log_2(n+1)-1)/9.
Lower and upper limits:
lim inf a(n)/10^log_2(n) = 1/45, for n --> infinity.
lim sup a(n)/10^log_2(n) = 1/9, for n --> infinity.
G.f.: g(x) = (1/(x(1-x)))*sum_{j=0..infinity} 10^j* x^(2*2^j)*(1 + 2 x^2^j)/(1 + x^2^j).
Also: g(x) = (1/(1-x))*(h_(2,0)(x) + h_(2,1)(x) - 2*h_(2,2)(x)), where h_(2,k)(x) = sum_{j>=0} 10^j*x^(2^(j+1)-1)*x^(k*2^j)/(1-x^2^(j+1)).
Also: g(x) = (1/(1-x)) sum_{j>=0} (1 - 3(x^2^j)^2 + 2(x^2^j)^3)*x^2^j*f_j(x)/(1-x^2^j), where f_j(x) = 10^j*x^(2^j-1)/(1-(x^2^j)^2). The f_j obey the recurrence f_0(x) = 1/(1-x^2), f_(j+1)(x) = 10x*f_j(x^2). (End)

Extensions

Some crossrefs added by Hieronymus Fischer, Jun 06 2012
Edited by M. F. Hasler, Mar 26 2015

A214676 A(n,k) is n represented in bijective base-k numeration; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 11, 1, 2, 111, 1, 2, 11, 1111, 1, 2, 3, 12, 11111, 1, 2, 3, 11, 21, 111111, 1, 2, 3, 4, 12, 22, 1111111, 1, 2, 3, 4, 11, 13, 111, 11111111, 1, 2, 3, 4, 5, 12, 21, 112, 111111111, 1, 2, 3, 4, 5, 11, 13, 22, 121, 1111111111
Offset: 1

Views

Author

Alois P. Heinz, Jul 25 2012

Keywords

Comments

The digit set for bijective base-k numeration is {1, 2, ..., k}.

Examples

			Square array A(n,k) begins:
:         1,   1,  1,  1,  1,  1,  1,  1, ...
:        11,   2,  2,  2,  2,  2,  2,  2, ...
:       111,  11,  3,  3,  3,  3,  3,  3, ...
:      1111,  12, 11,  4,  4,  4,  4,  4, ...
:     11111,  21, 12, 11,  5,  5,  5,  5, ...
:    111111,  22, 13, 12, 11,  6,  6,  6, ...
:   1111111, 111, 21, 13, 12, 11,  7,  7, ...
:  11111111, 112, 22, 14, 13, 12, 11,  8, ...
		

Crossrefs

A(n+1,n) gives A010850.

Programs

  • Maple
    A:= proc(n, b) local d, l, m; m:= n; l:= NULL;
          while m>0 do  d:= irem(m, b, 'm');
            if d=0 then d:=b; m:=m-1 fi;
            l:= d, l
          od; parse(cat(l))
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
  • Mathematica
    A[n_, b_] := Module[{d, l, m}, m = n; l = Nothing; While[m > 0, {m, d} = QuotientRemainder[m, b]; If[d == 0, d = b; m--]; l = {d, l}]; FromDigits @ Flatten @ l];
    Table[A[n, d-n+1], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 28 2019, from Maple *)

A084544 Alternate number system in base 4.

Original entry on oeis.org

1, 2, 3, 4, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44, 111, 112, 113, 114, 121, 122, 123, 124, 131, 132, 133, 134, 141, 142, 143, 144, 211, 212, 213, 214, 221, 222, 223, 224, 231, 232, 233, 234, 241, 242, 243, 244, 311, 312, 313, 314, 321
Offset: 1

Views

Author

Robert R. Forslund (forslund(AT)tbaytel.net), Jun 27 2003

Keywords

Examples

			From _Hieronymus Fischer_, Jun 06 2012: (Start)
a(100)  = 1144.
a(10^3) = 33214.
a(10^4) = 2123434.
a(10^5) = 114122134.
a(10^6) = 3243414334.
a(10^7) = 211421121334.
a(10^8) = 11331131343334.
a(10^9) = 323212224213334. (End)
		

Crossrefs

Programs

  • Python
    def A084544(n):
        m = (3*n+1).bit_length()-1>>1
        return int(''.join((str(((3*n+1-(1<<(m<<1)))//(3<<((m-1-j)<<1))&3)+1) for j in range(m)))) # Chai Wah Wu, Feb 08 2023

Formula

From Hieronymus Fischer, Jun 06 and Jun 08 2012: (Start)
The formulas are designed to calculate base-10 numbers only using the digits 1..4.
a(n) = Sum_{j=0..m-1} (1 + b(j) mod 4)*10^j,
where m = floor(log_4(3*n+1)), b(j) = floor((3*n+1-4^m)/(3*4^j)).
Special values:
a(k*(4^n-1)/3) = k*(10^n-1)/9, k = 1,2,3,4.
a((7*4^n-4)/3) = (13*10^n-4)/9 = 10^n + 4*(10^n-1)/9.
a((4^n-1)/3 - 1) = 4*(10^(n-1)-1)/9, n > 1.
Inequalities:
a(n) <= (10^log_4(3*n+1)-1)/9, equality holds for n=(4^k-1)/3, k>0.
a(n) > (4/10)*(10^log_4(3*n+1)-1)/9, n > 0.
Lower and upper limits:
lim inf a(n)/10^log_4(3*n) = 2/45, for n --> infinity.
lim sup a(n)/10^log_4(3*n) = 1/9, for n --> infinity.
G.f.: g(x) = (x^(1/3)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(4/3)*(1 - 5z(j)^4 + 4z(j)^5)/((1-z(j))(1-z(j)^4)), where z(j) = x^4^j.
Also: g(x) = (1/(1-x)) Sum_{j>=0} (1-5(x^4^j)^4 + 4(x^4^j)^5)*x^4^j*f_j(x)/(1-x^4^j), where f_j(x) = 10^j*x^((4^j-1)/3)/(1-(x^4^j)^4). The f_j obey the recurrence f_0(x) = 1/(1-x^4), f_(j+1)(x) = 10x*f_j(x^4).
Also: g(x) = (1/(1-x))* (h_(4,0)(x) + h_(4,1)(x) + h_(4,2)(x) + h_(4,3)(x) - 4*h_(4,4)(x)), where h_(4,k)(x) = Sum_{j>=0} 10^j*x^((4^(j+1)-1)/3) * (x^4^j)^k/(1-(x^4^j)^4).
(End)
a(n) = A045926(n) / 2. - Reinhard Zumkeller, Jan 01 2013

Extensions

Offset set to 1 according to A007931, A007932 by Hieronymus Fischer, Jun 06 2012

A084545 Alternate number system in base 5.

Original entry on oeis.org

1, 2, 3, 4, 5, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 41, 42, 43, 44, 45, 51, 52, 53, 54, 55, 111, 112, 113, 114, 115, 121, 122, 123, 124, 125, 131, 132, 133, 134, 135, 141, 142, 143, 144, 145, 151, 152, 153, 154, 155, 211, 212, 213, 214, 215, 221, 222
Offset: 1

Views

Author

Robert R. Forslund (forslund(AT)tbaytel.net), Jun 27 2003

Keywords

Examples

			From _Hieronymus Fischer_, Jun 06 2012: (Start)
a(100)  = 345.
a(10^3) = 12445.
a(10^4) = 254445.
a(10^5) = 11144445.
a(10^6) = 223444445.
a(10^7) = 4524444445.
a(10^8) = 145544444445.
a(10^9) = 3521444444445. (End)
		

Crossrefs

Programs

  • PARI
    a(n) = my (w=5); while (n>w, n -= w; w *= 5); my (d=digits(w+n-1, 5)); d[1] = 0; fromdigits(d) + (10^(#d-1)-1)/9 \\ Rémy Sigrist, Dec 04 2019

Formula

From Hieronymus Fischer, Jun 06 and Jun 08 2012: (Start)
The formulas are designed to calculate base-10 numbers only using the digits 1..5.
a(n) = Sum_{j=0..m-1} (1 + b(j) mod 5)*10^j, where m = floor(log_5(4*n+1)), b(j) = floor((4*n+1-5^m)/(4*5^j)).
a(k*(5^n-1)/4) = k*(10^n-1)/9, for k = 1,2,3,4,5.
a((9*5^n-5)/4) = (14*10^n-5)/9 = 10^n + 5*(10^n-1)/9.
a((5^n-1)/4 - 1) = 5*(10^(n-1)-1)/9, n>1.
a(n) <= (10^log_5(4*n+1)-1)/9, equality holds for n=(5^k-1)/4, k>0.
a(n) > (5/10)*(10^log_5(4*n+1)-1)/9, n>0.
lim inf a(n)/10^log_5(4*n) = 1/18, for n --> infinity.
lim sup a(n)/10^log_5(4*n) = 1/9, for n --> infinity.
G.f.: g(x) = (x^(1/4)*(1-x))^(-1) sum_{j>=0} 10^j*z(j)^(5/4)*(1 - 6z(j)^5 + 5z(j)^6)/((1-z(j))(1-z(j)^5)), where z(j) = x^5^j.
Also: g(x) = (1/(1-x)) sum_{j>=0} (1-6(x^5^j)^5+5(x^5^j)^6)*x^5^j*f_j(x)/(1-x^5^j), where f_j(x) = 10^j*x^((5^j-1)/4)/(1-(x^5^j)^5). The f_j obey the recurrence f_0(x) = 1/(1-x^5), f_(j+1)(x) = 10x*f_j(x^5).
Also: g(x) = 1/(1-x))*(h_(5,0)(x) + h_(5,1)(x) + h_(5,2)(x) + h_(4,1)(x) + h_(5,4)(x) - 5*h_(5,5)(x)), where h_(5,k)(x) = sum_{j>=0} 10^j*x^((5^(j+1)-1)/4) * (x^5^j)^k/(1-(x^5^j)^5).
(End)

Extensions

Offset set to 1 according to A007931, A007932 and more terms added by Hieronymus Fischer, Jun 06 2012

A239018 Non-primitive words on {1,2,3}.

Original entry on oeis.org

11, 22, 33, 111, 222, 333, 1111, 1212, 1313, 2121, 2222, 2323, 3131, 3232, 3333, 11111, 22222, 33333, 111111, 112112, 113113, 121121, 121212, 122122, 123123, 131131, 131313, 132132, 133133, 211211, 212121, 212212, 213213, 221221, 222222, 223223, 231231, 232232, 232323, 233233, 311311, 312312, 313131, 313313
Offset: 1

Views

Author

M. F. Hasler, Mar 08 2014

Keywords

Comments

A word is non-primitive if it is a nontrivial power (i.e., repetition) of a subword. Therefore, for a prime number of digits, only the repdigit numbers are primitive. For words with 6 letters, there is also 112^2,113^2,121^2,12^3,... where w^n means n concatenations of w.
Lyndon words on {1,2,3}, A102660, are the terms in A007932 which are primitive (i.e., in the complement A239017 of this sequence) and not larger than any of their rotation, i.e., in A239016.
This is the complement of A239017 in A007932.
This is for {1,2,3} what A213972 is for {1,2} (and A213973 for {1,3}, A213974 for {2,3}).

Crossrefs

Programs

  • PARI
    for(n=1,7,p=vector(n,i,10^(n-i))~;forvec(d=vector(n,i,[1,3]),is_A239017(m=d*p)||print1(m",")))
    
  • Python
    from sympy import divisors
    from itertools import product
    def agentod(maxd):
        for d in range(2, maxd+1):
            divs, alld = divisors(d)[:-1], set()
            for div in divs:
                for t in product("123", repeat=div):
                    alld.add(int("".join(t*(d//div))))
            yield from sorted(alld)
    print([an for an in agentod(6)]) # Michael S. Branicky, Nov 22 2021

A239019 Numbers which are not primitive words over the alphabet {0,...,9} (when written in base 10).

Original entry on oeis.org

11, 22, 33, 44, 55, 66, 77, 88, 99, 111, 222, 333, 444, 555, 666, 777, 888, 999, 1010, 1111, 1212, 1313, 1414, 1515, 1616, 1717, 1818, 1919, 2020, 2121, 2222, 2323, 2424, 2525, 2626, 2727, 2828, 2929, 3030, 3131, 3232, 3333, 3434, 3535, 3636, 3737, 3838, 3939, 4040, 4141, 4242, 4343, 4444, 4545, 4646, 4747, 4848, 4949
Offset: 1

Views

Author

M. F. Hasler, Mar 08 2014

Keywords

Comments

A word is primitive iff it is not a power, i.e., repetition, of a subword. The only non-primitive words with a prime number of letters (here: digits) are the repdigit numbers. Thus, the first nontrivial terms of this sequence are 1010,1212,...
This sequence does *not* contain all non-primitive words over the alphabet {0,...,9}, namely, it excludes those which would be numbers with leading zeros: 00,000,0000,0101,0202,...
Lists of non-primitive words over a sub-alphabet of {1...9}, like A213972, A213973, A213974, A239018, ... are given as intersection of this with the set of all words in that alphabet, e.g., A007931, A032810, A032917, A007932, ...

Programs

  • Maple
    F:= proc(d) local p,R,q;
      R:= {seq(x*(10^d-1)/9, x=1..9)};
      for p in numtheory:-factorset(d) minus {d} do
        q:= d/p;
        R:= R union {seq(x*(10^d-1)/(10^q-1),x=10^(q-1)..10^q-1)};
      od:
      sort(convert(R,list))
    end proc:
    [seq(op(F(i)),i=2..4)]; # Robert Israel, Nov 14 2017
  • PARI
    is_A239019(n)=fordiv(#n=digits(n),L,L<#n && n==concat(Col(vector(#n/L,i,1)~*vecextract(n,2^L-1))~)&&return(1))

A239017 List of primitive words on {1,2,3}.

Original entry on oeis.org

1, 2, 3, 12, 13, 21, 23, 31, 32, 112, 113, 121, 122, 123, 131, 132, 133, 211, 212, 213, 221, 223, 231, 232, 233, 311, 312, 313, 321, 322, 323, 331, 332, 1112, 1113, 1121, 1122, 1123, 1131, 1132, 1133, 1211, 1213, 1221, 1222, 1223, 1231, 1232, 1233, 1311, 1312, 1321, 1322, 1323, 1331, 1332, 1333, 2111, 2112, 2113, 2122, 2123
Offset: 1

Views

Author

M. F. Hasler, Mar 08 2014

Keywords

Comments

A word is primitive if it is not a power (i.e., repetition) of a subword. The non-primitive words 11, 22, 33, 111, 222, 333, 1111, 1212, 1313, 2121, 2222, ... (cf. A239018) are excluded here.
This sequence is the complement of A239018 in A007932.
It is the analog for {1,2,3} of A213969 for {1,2}.
The Lyndon words on {1,2,3}, A102660, are the subsequence of these primitive words not larger than any of their "rotations", i.e., in A239016.

Crossrefs

Programs

  • PARI
    is_A239017(n)={fordiv(#d=digits(n),L,L<#d&&d==concat(Col(vector(#d/L,i,1)~*vecextract(d,2^L-1))~)&&return);!setminus(Set(d),[1,2,3])}
    for(n=1,5,p=vector(n,i,10^(n-i))~;forvec(d=vector(n,i,[1,3]),is_A239017(m=d*p)&&print1(m",")))

Formula

A351702 In the balanced ternary representation of n, reverse the order of digits other than the most significant.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 11, 6, 9, 12, 7, 10, 13, 14, 23, 32, 17, 26, 35, 20, 29, 38, 15, 24, 33, 18, 27, 36, 21, 30, 39, 16, 25, 34, 19, 28, 37, 22, 31, 40, 41, 68, 95, 50, 77, 104, 59, 86, 113, 44, 71, 98, 53, 80, 107, 62, 89, 116, 47, 74, 101, 56, 83, 110, 65, 92
Offset: 0

Views

Author

Kevin Ryde, Feb 19 2022

Keywords

Comments

Self-inverse permutation with swaps confined to terms of a given digit length (A134021) so within blocks n = (3^k+1)/2 .. (3^(k+1)-1)/2.
Can extend to negative n by a(-n) = -a(n).
A072998 is balanced ternary coded in decimal digits so that reversal except first digit of A072998(n) is at A072998(a(n)). Similarly its ternary equivalent A157671, and also A132141 ternary starting with 1.
These sequences all have a fixed initial digit followed by all ternary strings which is the reversed part. A007932 is such strings as decimal digits 1,2,3 but it omits the empty string so the whole reversal of A007932(n) is at A007932(a(n+1)-1).
Fixed points a(n) = n are where n in balanced ternary is a palindrome apart from its initial 1. These are the full balanced ternary palindromes with their least significant 1 removed, so all n = (A134027(m)-1)/3 for m>=2.

Examples

			n    = 224 = balanced ternary 1,  0, -1, 1,  0, -1
                      reverse     ^^^^^^^^^^^^^^^^
a(n) = 168 = balanced ternary 1, -1,  0, 1, -1,  0
		

Crossrefs

Cf. A059095 (balanced ternary), A134028 (full reverse), A134027 (palindromes).
In other bases: A059893 (binary), A343150 (Zeckendorf), A343152 (lazy Fibonacci).

Programs

  • PARI
    a(n) = if(n==0,0, my(k=if(n,logint(n<<1,3)), s=(3^k+1)>>1); s + fromdigits(Vec(Vecrev(digits(n-s,3)),k),3));
Showing 1-10 of 14 results. Next