A007956 Product of the proper divisors of n.
1, 1, 1, 2, 1, 6, 1, 8, 3, 10, 1, 144, 1, 14, 15, 64, 1, 324, 1, 400, 21, 22, 1, 13824, 5, 26, 27, 784, 1, 27000, 1, 1024, 33, 34, 35, 279936, 1, 38, 39, 64000, 1, 74088, 1, 1936, 2025, 46, 1, 5308416, 7, 2500, 51, 2704, 1, 157464, 55, 175616, 57, 58, 1, 777600000, 1, 62, 3969, 32768, 65
Offset: 1
Examples
a(18) = 1 * 2 * 3 * 6 * 9 = 324. - _Bernard Schott_, Jan 31 2019
References
- József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 57.
- Wacław Sierpiński, Elementary Theory of Numbers, Ex. 2 p. 174, Warsaw, 1964.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Zhu Weiyi, On the divisor product sequences, Smarandache Notions J., Vol. 14 (2004), pp. 144-146.
Crossrefs
Programs
-
Haskell
a007956 = product . a027751_row -- Reinhard Zumkeller, Feb 04 2013, Nov 02 2011
-
Maple
A007956 := n -> mul(i,i=op(numtheory[divisors](n) minus {1,n})); seq(A007956(i), i=1..79); # Peter Luschny, Mar 22 2011
-
Mathematica
Table[Times@@Most[Divisors[n]], {n, 65}] (* Alonso del Arte, Apr 18 2011 *) a[n_] := n^(DivisorSigma[0, n]/2 - 1); Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Oct 07 2013 *)
-
PARI
A007956(n) = local(a);a=1;fordiv(n,d,a=a*d);a/n \\ Michael B. Porter, Dec 01 2009
-
PARI
a(n)=my(k); if(issquare(n, &k), k^(numdiv(n)-2), n^(numdiv(n)/2-1)) \\ Charles R Greathouse IV, Oct 15 2015
-
Python
from math import isqrt from sympy import divisor_count def A007956(n): return isqrt(n)**(d-2) if (d:=divisor_count(n))&1 else n**((d>>1)-1) # Chai Wah Wu, Jun 18 2023
Formula
Sum_{k=1..n} 1/a(k) ~ pi(n) + log(log(n))^2 + c_1*log(log(n)) + c_2 + O(log(log(n))/log(n)), where pi(n) = A000720(n) and c_1 and c_2 are constants (Weiyi, 2004; Sandor and Crstici, 2004). - Amiram Eldar, Oct 29 2022
Extensions
More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)
Comments