cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 44 results. Next

A064180 Composite numbers k such that the sum of the proper divisors of k not including 1, (Chowla's function, A048050) and their product (A007956) are both perfect squares.

Original entry on oeis.org

117, 208, 292, 320, 475, 539, 549, 567, 873, 964, 1737, 2107, 2692, 2997, 3573, 3904, 4477, 4802, 5275, 5284, 5968, 6057, 7267, 7488, 7492, 9189, 9457, 9475, 10084, 10377, 11072, 11728, 11737, 12717, 13769, 14373, 14692, 16219, 16399, 17397
Offset: 1

Views

Author

Robert G. Wilson v, Oct 14 2001

Keywords

Examples

			117 is in the sequence because the divisors of 117 are 1, 3, 9, 13, 39 and 117. Being squarefree itself, the product of divisors is a perfect square. The sum of the divisors in question, 3+9+13+39 = 64 and it is a perfect square.
		

Crossrefs

Programs

  • Magma
    [k:k in [1..18000]| not IsPrime(k) and IsSquare((&+Divisors(k))-1-k) and IsSquare((&*Divisors(k))/k) ]; // Marius A. Burtea, Jul 03 2019
  • Mathematica
    Select[ Range[2, 25000], IntegerQ[ Sqrt[ Apply[ Plus, Delete[ Divisors[ # ], -1]] - 1]] && IntegerQ[ Sqrt[ Apply[ Times, Delete[ Divisors[ # ], -1]]]] && ! PrimeQ[ # ] & ]
    aQ[n_] := CompositeQ[n] && IntegerQ[Sqrt[n^(DivisorSigma[0, n]/2 - 1)]] && IntegerQ[Sqrt[DivisorSigma[1, n] - 1 - n]]; Select[Range[18000], aQ] (* Amiram Eldar, Jul 03 2019 *)

A339308 Partial sums of products of proper divisors of n (A007956).

Original entry on oeis.org

1, 2, 3, 5, 6, 12, 13, 21, 24, 34, 35, 179, 180, 194, 209, 273, 274, 598, 599, 999, 1020, 1042, 1043, 14867, 14872, 14898, 14925, 15709, 15710, 42710, 42711, 43735, 43768, 43802, 43837, 323773, 323774, 323812, 323851, 387851, 387852, 461940, 461941, 463877
Offset: 1

Views

Author

Jaroslav Krizek, Nov 29 2020

Keywords

Examples

			a(6) = 12 = (1 + 1 + 1 + 2 + 1 + 6), where pod(n)/ n = 1, 1, 1, 2, 1, 6, 1, 8, 3, 10, 1, 144, ...
		

Crossrefs

Cf. A007955 (pod(n)), A007956 (pod(n)/n), A092144 (partial products of A007956).

Programs

  • Magma
    [&+[&*Divisors(k) / k: k in [1..n]]: n in [1..100]]
    
  • Mathematica
    popd[n_] := n^(DivisorSigma[0, n]/2 - 1); Accumulate @ Array[popd, 44] (* Amiram Eldar, Nov 30 2020 *)
  • PARI
    a(n) = sum(k=1, n, vecprod(divisors(k))/k); \\ Michel Marcus, Nov 30 2020

Formula

a(n) = Sum_{k=1..n} pod(k)/k = Sum_{k=1..n} (A007955(k)/k) = Sum_{k=1..n} A007956(k).

A355571 Complement of A007956: numbers not of the form P(k)/k where P(n) is the product of the divisors of n.

Original entry on oeis.org

4, 9, 12, 16, 18, 20, 24, 25, 28, 30, 32, 36, 40, 42, 44, 45, 48, 49, 50, 52, 54, 56, 60, 63, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 121, 124, 126, 128, 130, 132, 135, 136, 138, 140, 147, 148, 150, 152
Offset: 1

Views

Author

Luca Onnis, Jul 07 2022

Keywords

Comments

There are no primes in the sequence, since A007956(p^2) = p for all primes p.
There are infinitely many terms, in fact p^2 is a term for all primes p.
If 8k+1 is not a perfect square, then p^k is a term for all primes p.
Depends only on the prime signature: n is in this sequence if and only if A046523(n) is in this sequence. - Charles R Greathouse IV, Jul 08 2022
Contains all the weak numbers (A052485) aside from the primes (A000040) and squarefree semiprimes (A006881). - Charles R Greathouse IV, Jul 08 2022

Examples

			4 is a term of this sequence because there are no numbers k such that A007956(k) = 4.
2^10 is not a term of this sequence because A007956(32) = 1024 (Note that 8*10+1=81=9^2 is a perfect square).
p^4 belongs to this sequence for all primes p, in fact 8*4+1=33 is not a perfect square, so there are no numbers h such that A007956(h) = p^4.
		

References

  • Wacław Sierpiński, Elementary Theory of Numbers, Ex. 2 p. 174, Warsaw, 1964.

Crossrefs

Subsequences by prime signature: A001248 (p^2), A054753 (p^2*q), A030514 (p^4), A065036 (p^3*q), A007304 (p*q*r), A050997 (p^5), A085986 (p^2*q^2).

Programs

  • Mathematica
    Complement[Complement[Table[n, {n, 2, 1000}], Select[NumericalSort[Table[Times @@ Most[Divisors[n]], {n, 1000000}]], # != 1 && # < 1000 &]], Select[Table[Prime[n], {n, 1, 1000}], # < 1000 &]]

Formula

a(n) = n + O(n log log n/log n). - Charles R Greathouse IV, Jul 08 2022

A001065 Sum of proper divisors (or aliquot parts) of n: sum of divisors of n that are less than n.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, 15, 1, 21, 1, 22, 11, 14, 1, 36, 6, 16, 13, 28, 1, 42, 1, 31, 15, 20, 13, 55, 1, 22, 17, 50, 1, 54, 1, 40, 33, 26, 1, 76, 8, 43, 21, 46, 1, 66, 17, 64, 23, 32, 1, 108, 1, 34, 41, 63, 19, 78, 1, 58, 27, 74, 1, 123, 1, 40, 49, 64, 19, 90, 1, 106
Offset: 1

Views

Author

Keywords

Comments

Also total number of parts in all partitions of n into equal parts that do not contain 1 as a part. - Omar E. Pol, Jan 16 2013
Related concepts: If a(n) < n, n is said to be deficient, if a(n) > n, n is abundant, and if a(n) = n, n is perfect. If there is a cycle of length 2, so that a(n) = b and a(b) = n, b and n are said to be amicable. If there is a longer cycle, the numbers in the cycle are said to be sociable. See examples. - Juhani Heino, Jul 17 2017
Sum of the smallest parts in the partitions of n into two parts such that the smallest part divides the largest. - Wesley Ivan Hurt, Dec 22 2017
a(n) is also the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts that do not contain k as a part (the comment dated Jan 16 2013 is the case for k = 1). - Omar E. Pol, Nov 23 2019
Fixed points are in A000396. - Alois P. Heinz, Mar 10 2024

Examples

			x^2 + x^3 + 3*x^4 + x^5 + 6*x^6 + x^7 + 7*x^8 + 4*x^9 + 8*x^10 + x^11 + ...
For n = 44, sum of divisors of n = sigma(n) = 84; so a(44) = 84-44 = 40.
Related concepts: (Start)
From 1 to 17, all n are deficient, except 6 and 12 seen below. See A005100.
Abundant numbers: a(12) = 16, a(18) = 21. See A005101.
Perfect numbers: a(6) = 6, a(28) = 28. See A000396.
Amicable numbers: a(220) = 284, a(284) = 220. See A259180.
Sociable numbers: 12496 -> 14288 -> 15472 -> 14536 -> 14264 -> 12496. See A122726. (End)
For n = 10 the sum of the divisors of 10 that are less than 10 is 1 + 2 + 5 = 8. On the other hand, the partitions of 10 into equal parts that do not contain 1 as a part are [10], [5,5], [2,2,2,2,2], there are 8 parts, so a(10) = 8. - _Omar E. Pol_, Nov 24 2019
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • George E. Andrews, Number Theory. New York: Dover, 1994; Pages 1, 75-92; p. 92 #15: Sigma(n) / d(n) >= n^(1/2).
  • Carl Pomerance, The first function and its iterates, pp. 125-138 in Connections in Discrete Mathematics, ed. S. Butler et al., Cambridge, 2018.
  • H. J. J. te Riele, Perfect numbers and aliquot sequences, pp. 77-94 in J. van de Lune, ed., Studieweek "Getaltheorie en Computers", published by Math. Centrum, Amsterdam, Sept. 1980.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 91.

Crossrefs

Least inverse: A070015, A359132.
Values taken: A078923, values not taken: A005114.
Records: A034090, A034091.
First differences: A053246, partial sums: A153485.
a(n) = n - A033879(n) = n + A033880(n). - Omar E. Pol, Dec 30 2013
Row sums of A141846 and of A176891. - Gary W. Adamson, May 02 2010
Row sums of A176079. - Mats Granvik, May 20 2012
Alternating row sums of A231347. - Omar E. Pol, Jan 02 2014
a(n) = sum (A027751(n,k): k = 1..A000005(n)-1). - Reinhard Zumkeller, Apr 05 2013
For n > 1: a(n) = A240698(n,A000005(n)-1). - Reinhard Zumkeller, Apr 10 2014
A134675(n) = A007434(n) + a(n). - Conjectured by John Mason and proved by Max Alekseyev, Jan 07 2015
Cf. A037020 (primes), A053868, A053869 (odd and even terms).
Cf. A048138 (number of occurrences), A238895, A238896 (record values thereof).
Cf. A007956 (products of proper divisors).
Cf. A005100, A005101, A000396, A259180, A122726 (related concepts).

Programs

  • Haskell
    a001065 n = a000203 n - n  -- Reinhard Zumkeller, Sep 15 2011
    
  • Magma
    [SumOfDivisors(n)-n: n in [1..100]]; // Vincenzo Librandi, May 06 2015
    
  • Maple
    A001065 := proc(n)
        numtheory[sigma](n)-n ;
    end proc:
    seq( A001065(n),n=1..100) ;
  • Mathematica
    Table[ Plus @@ Select[ Divisors[ n ], #Zak Seidov, Sep 10 2009 *)
    Table[DivisorSigma[1, n] - n, {n, 1, 80}] (* Jean-François Alcover, Apr 25 2013 *)
    Array[Plus @@ Most@ Divisors@# &, 80] (* Robert G. Wilson v, Dec 24 2017 *)
  • MuPAD
    numlib::sigma(n)-n$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n==0, 0, sigma(n) - n)} /* Michael Somos, Sep 20 2011 */
    
  • Python
    from sympy import divisor_sigma
    def A001065(n): return divisor_sigma(n)-n # Chai Wah Wu, Nov 04 2022
    
  • Sage
    [sigma(n, 1)-n for n in range(1, 81)] # Stefano Spezia, Jul 14 2025

Formula

G.f.: Sum_{k>0} k * x^(2*k)/(1 - x^k). - Michael Somos, Jul 05 2006
a(n) = sigma(n) - n = A000203(n) - n. - Lekraj Beedassy, Jun 02 2005
a(n) = A155085(-n). - Michael Somos, Sep 20 2011
Equals inverse Mobius transform of A051953 = A051731 * A051953. Example: a(6) = 6 = (1, 1, 1, 0, 0, 1) dot (0, 1, 1, 2, 1, 4) = (0 + 1 + 1 + 0 + 0 + 4), where A051953 = (0, 1, 1, 2, 1, 4, 1, 4, 3, 6, 1, 8, ...) and (1, 1, 1, 0, 0, 1) = row 6 of A051731 where the 1's positions indicate the factors of 6. - Gary W. Adamson, Jul 11 2008
a(n) = A006128(n) - A220477(n) - n. - Omar E. Pol Jan 17 2013
a(n) = Sum_{i=1..floor(n/2)} i*(1-ceiling(frac(n/i))). - Wesley Ivan Hurt, Oct 25 2013
Dirichlet g.f.: zeta(s-1)*(zeta(s) - 1). - Ilya Gutkovskiy, Aug 07 2016
a(n) = 1 + A048050(n), n > 1. - R. J. Mathar, Mar 13 2018
Erdős (Elem. Math. 28 (1973), 83-86) shows that the density of even integers in the range of a(n) is strictly less than 1/2. The argument of Coppersmith (1987) shows that the range of a(n) has density at most 47/48 < 1. - N. J. A. Sloane, Dec 21 2019
G.f.: Sum_{k >= 2} x^k/(1 - x^k)^2. Cf. A296955. (This follows from the fact that if g(z) = Sum_{n >= 1} a(n)*z^n and f(z) = Sum_{n >= 1} a(n)*z^(N*n)/(1 - z^n) then f(z) = Sum_{k >= N} g(z^k), taking a(n) = n and N = 2.) - Peter Bala, Jan 13 2021
Faster converging g.f.: Sum_{n >= 1} q^(n*(n+1))*(n*q^(3*n+2) - (n + 1)*q^(2*n+1) - (n - 1)*q^(n+1) + n)/((1 - q^n)*(1 - q^(n+1))^2). (In equation 1 in Arndt, after combining the two n = 0 summands to get -t/(1 - t), apply the operator t*d/dt to the resulting equation and then set t = q and x = 1.) - Peter Bala, Jan 22 2021
a(n) = Sum_{d|n} d * (1 - [n = d]), where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 28 2021
a(n) = Sum_{i=1..n} ((n-1) mod i) - (n mod i). [See also A176079.] - José de Jesús Camacho Medina, Feb 23 2021

A007955 Product of divisors of n.

Original entry on oeis.org

1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19, 8000, 441, 484, 23, 331776, 125, 676, 729, 21952, 29, 810000, 31, 32768, 1089, 1156, 1225, 10077696, 37, 1444, 1521, 2560000, 41, 3111696, 43, 85184, 91125, 2116, 47, 254803968, 343
Offset: 1

Views

Author

R. Muller

Keywords

Comments

All terms of this sequence occur only once. See the second T. D. Noe link for a proof. - T. D. Noe, Jul 07 2008
Every natural number has a unique representation in terms of divisor products. See the W. Lang link. - Wolfdieter Lang, Feb 08 2011
a(n) = n only if n is prime or 1 (or, if n is in A008578). - Alonso del Arte, Apr 18 2011
Sometimes called the "divisorial" of n. - Daniel Forgues, Aug 03 2012
a(n) divides EulerPhi(x^n-y^n) (see A. Rotkiewicz link). - Michel Marcus, Dec 15 2012
The proof that all the terms of this sequence occur only once (mentioned above) was given by Niven in 1984. - Amiram Eldar, Aug 16 2020

Examples

			Divisors of 10 = [1, 2, 5, 10]. So, a(10) = 2*5*10 = 100. - _Indranil Ghosh_, Mar 22 2017
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 57.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 83.

Crossrefs

Cf. A000203 (sums of divisors).
Cf. A000010 (comments on product formulas).

Programs

  • GAP
    List(List([1..50],n->DivisorsInt(n)),Product); # Muniru A Asiru, Feb 17 2019
  • Haskell
    a007955 = product . a027750_row  -- Reinhard Zumkeller, Feb 06 2012
    
  • Magma
    f := function(n); t1 := &*[d : d in Divisors(n) ]; return t1; end function;
    
  • Maple
    A007955 := proc(n) mul(d,d=numtheory[divisors](n)) ; end proc: # R. J. Mathar, Mar 17 2011
    seq(isqrt(n^numtheory[tau](n)), n=1..50); # Gary Detlefs, Feb 15 2019
  • Mathematica
    Array [ Times @@ Divisors[ # ]&, 100 ]
    a[n_] := n^(DivisorSigma[0, n]/2); Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 21 2013 *)
  • PARI
    a(n)=if(issquare(n,&n),n^numdiv(n^2),n^(numdiv(n)/2)) \\ Charles R Greathouse IV, Feb 11 2011
    
  • Python
    from sympy import prod, divisors
    print([prod(divisors(n)) for n in range(1, 51)]) # Indranil Ghosh, Mar 22 2017
    
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A007955(n):
        d = divisor_count(n)
        return isqrt(n)**d if d % 2 else n**(d//2) # Chai Wah Wu, Jan 05 2022
    
  • Sage
    [prod(divisors(n)) for n in (1..100)] # Giuseppe Coppoletta, Dec 16 2014
    
  • Sage
    [n^(sigma(n,0)/2) for n in (1..49)] # Stefano Spezia, Jul 14 2025
    
  • Scheme
    ;; A naive stand-alone implementation:
    (define (A007955 n) (let loop ((d n) (m 1)) (cond ((zero? d) m) ((zero? (modulo n d)) (loop (- d 1) (* m d))) (else (loop (- d 1) m)))))
    ;; Faster, if A000005 and A000196 are available:
    (define (A007955 n) (A000196 (expt n (A000005 n))))
    ;; Antti Karttunen, Mar 22 2017
    

Formula

a(n) = n^(d(n)/2) = n^(A000005(n)/2). Since a(n) = Product_(d|n) d = Product_(d|n) n/d, we have a(n)*a(n) = Product_(d|n) d*(n/d) = Product_(d|n) n = n^(tau(n)), whence a(n) = n^(tau(n)/2).
a(p^k) = p^A000217(k). - Enrique Pérez Herrero, Jul 22 2011
a(n) = A078599(n) * A178649(n). - Reinhard Zumkeller, Feb 06 2012
a(n) = A240694(n, A000005(n)). - Reinhard Zumkeller, Apr 10 2014
From Antti Karttunen, Mar 22 2017: (Start)
a(n) = A000196(n^A000005(n)). [From the original formula.]
A001222(a(n)) = A069264(n). [See Geoffrey Critzer's Feb 03 2015 comment in the latter sequence.]
A046523(a(n)) = A283995(n).
(End)
a(n) = Product_{k=1..n} gcd(n,k)^(1/phi(n/gcd(n,k))) = Product_{k=1..n} (n/gcd(n,k))^(1/phi(n/gcd(n,k))) where phi = A000010. - Richard L. Ollerton, Nov 07 2021
From Bernard Schott, Jan 11 2022: (Start)
a(n) = n^2 iff n is in A007422.
a(n) = n^3 iff n is in A162947.
a(n) = n^4 iff n is in A111398.
a(n) = n^5 iff n is in A030628.
a(n) = n^(3/2) iff n is in A280076. (End)
From Amiram Eldar, Oct 29 2022: (Start)
a(n) = n * A007956(n).
Sum_{k=1..n} 1/a(k) ~ log(log(n)) + c + O(1/log(n)), where c is a constant (Weiyi, 2004; Sandor and Crstici, 2004). (End)
a(n) = Product_{k=1..n} (n * (1 - ceiling(n/k - floor(n/k))))/k + ceiling(n/k - floor(n/k)). - Adriano Steffler, Feb 08 2024

A048050 Chowla's function: sum of divisors of n except for 1 and n.

Original entry on oeis.org

0, 0, 0, 2, 0, 5, 0, 6, 3, 7, 0, 15, 0, 9, 8, 14, 0, 20, 0, 21, 10, 13, 0, 35, 5, 15, 12, 27, 0, 41, 0, 30, 14, 19, 12, 54, 0, 21, 16, 49, 0, 53, 0, 39, 32, 25, 0, 75, 7, 42, 20, 45, 0, 65, 16, 63, 22, 31, 0, 107, 0, 33, 40, 62, 18, 77, 0, 57, 26, 73, 0, 122, 0, 39, 48, 63, 18, 89
Offset: 1

Views

Author

Keywords

Comments

a(n) = 0 if and only if n is a noncomposite number (cf. A008578). - Omar E. Pol, Jul 31 2012
If n is semiprime, a(n) = A008472(n). - Wesley Ivan Hurt, Aug 22 2013
If n = p*q where p and q are distinct primes then a(n) = p+q.
If k,m > 1 are coprime, then a(k*m) = a(k)*a(m) + (m+1)*a(k) + (k+1)*a(m) + k + m. - Robert Israel, Apr 28 2015
a(n) is also the total number of parts in the partitions of n into equal parts that contain neither 1 nor n as a part (see example). More generally, a(n) is the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts that contain neither k nor k*n as a part. - Omar E. Pol, Nov 24 2019
Named after the Indian-American mathematician Sarvadaman D. S. Chowla (1907-1995). - Amiram Eldar, Mar 09 2024

Examples

			For n = 20 the divisors of 20 are 1,2,4,5,10,20, so a(20) = 2+4+5+10 = 21.
On the other hand, the partitions of 20 into equal parts that contain neither 1 nor 20 as a part are [10,10], [5,5,5,5], [4,4,4,4,4], [2,2,2,2,2,2,2,2,2,2]. There are 21 parts, so a(20) = 21. - _Omar E. Pol_, Nov 24 2019
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 92.

Crossrefs

Programs

  • Haskell
    a048050 1 = 0
    a048050 n = (subtract 1) $ sum $ a027751_row n
    -- Reinhard Zumkeller, Feb 09 2013
    
  • Magma
    A048050:=func< n | n eq 1 or IsPrime(n) select 0 else &+[ a: a in Divisors(n) | a ne 1 and a ne n ] >; [ A048050(n): n in [1..100] ]; // Klaus Brockhaus, Mar 04 2011
    
  • Maple
    A048050 := proc(n) if n > 1 then numtheory[sigma](n)-1-n ; else 0; end if; end proc:
  • Mathematica
    f[n_]:=Plus@@Divisors[n]-n-1; Table[f[n],{n,100}] (*Vladimir Joseph Stephan Orlovsky, Sep 13 2009*)
    Join[{0},DivisorSigma[1,#]-#-1&/@Range[2,80]] (* Harvey P. Dale, Feb 25 2015 *)
  • PARI
    a(n)=if(n>1,sigma(n)-n-1,0) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    from sympy import divisors
    def a(n): return sum(divisors(n)[1:-1]) # Indranil Ghosh, Apr 26 2017
    
  • Python
    from sympy import divisor_sigma
    def A048050(n): return 0 if n == 1 else divisor_sigma(n)-n-1 # Chai Wah Wu, Apr 18 2021

Formula

a(n) = A000203(n) - A065475(n).
a(n) = A001065(n) - 1, n > 1.
For n > 1: a(n) = Sum_{k=2..A000005(n)-1} A027750(n,k). - Reinhard Zumkeller, Feb 09 2013
a(n) = A000203(n) - n - 1, n > 1. - Wesley Ivan Hurt, Aug 22 2013
G.f.: Sum_{k>=2} k*x^(2*k)/(1 - x^k). - Ilya Gutkovskiy, Jan 22 2017

A030513 Numbers with 4 divisors.

Original entry on oeis.org

6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187
Offset: 1

Views

Author

Keywords

Comments

Essentially the same as A007422.
Numbers which are either the product of two distinct primes (A006881) or the cube of a prime (A030078).
4*a(n) are the solutions to A048272(x) = Sum_{d|x} (-1)^d = 4. - Benoit Cloitre, Apr 14 2002
Since A119479(4)=3, there are never more than 3 consecutive integers in the sequence. Triples of consecutive integers start at 33, 85, 93, 141, 201, ... (A039833). No such triple contains a term of the form p^3. - Ivan Neretin, Feb 08 2016
Numbers that are equal to the product of their proper divisors (A007956) (proof in Sierpiński). - Bernard Schott, Apr 04 2022

References

  • Wacław Sierpiński, Elementary Theory of Numbers, Ex. 2 p. 174, Warsaw, 1964.

Crossrefs

Equals the disjoint union of A006881 and A030078.

Programs

  • Magma
    [n: n in [1..200] | DivisorSigma(0, n) eq 4]; // Vincenzo Librandi, Jul 16 2015
    
  • Mathematica
    Select[Range[200], DivisorSigma[0,#]==4&] (* Harvey P. Dale, Apr 06 2011 *)
  • PARI
    is(n)=numdiv(n)==4 \\ Charles R Greathouse IV, May 18 2015
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A030513(n):
        def f(x): return int(n+x-primepi(integer_nthroot(x,3)[0])+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 16 2024

Formula

{n : A000005(n) = 4}. - Juri-Stepan Gerasimov, Oct 10 2009

Extensions

Incorrect comments removed by Charles R Greathouse IV, Mar 18 2010

A007422 Multiplicatively perfect numbers j: product of divisors of j is j^2.

Original entry on oeis.org

1, 6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187
Offset: 1

Views

Author

Keywords

Comments

Or, numbers j such that product of proper divisors of j is j.
If M(j) denotes the product of the divisors of j, then j is said to be k-multiplicatively perfect if M(j) = j^k. All such numbers are of the form p q^(k-1) or p^(2k-1). This statement is in Sandor's paper. Therefore all 2-multiplicatively perfect numbers are semiprime p*q or cubes p^3. - Walter Kehowski, Sep 13 2005
All 2-multiplicatively perfect numbers except 1 have 4 divisors (as implied by Kehowski) and the converse is also true that all numbers with 4 divisors are 2-multiplicatively perfect. - Howard Berman (howard_berman(AT)hotmail.com), Oct 24 2008
Also 1 followed by numbers j such that A000005(j) = 4. - Nathaniel Johnston, May 03 2011
Fixed points of A007956. - Reinhard Zumkeller, Jan 26 2014

Examples

			The divisors of 10 are 1, 2, 5, 10 and 1 * 2 * 5 * 10 = 100 = 10^2.
		

References

  • Kenneth Ireland and Michael Ira Rosen, A Classical Introduction to Modern Number Theory. Springer-Verlag, NY, 1982, p. 19.
  • Edmund Landau, Elementary Number Theory, translation by Jacob E. Goodman of Elementare Zahlentheorie (Vol. I_1 (1927) of Vorlesungen ueber Zahlentheorie), by Edmund Landau, with added exercises by Paul T. Bateman and E. E. Kohlbecker, Chelsea Publishing Co., New York, 1958, pp. 31-32.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A030513 (same as this sequence but without the 1), A027751, A006881 (subsequence), A030078 (subsequence), A084110, A084116, A236473.

Programs

  • Haskell
    a007422 n = a007422_list !! (n-1)
    a007422_list = [x | x <- [1..], a007956 x == x]
    -- Reinhard Zumkeller, Jan 26 2014
    
  • Magma
    IsA007422:=func< n | &*Divisors(n) eq n^2 >; [ n: n in [1..200] | IsA007422(n) ]; // Klaus Brockhaus, May 04 2011
    
  • Maple
    k:=2: MPL:=[]: for z from 1 to 1 do for n from 1 to 5000 do if convert(divisors(n),`*`) = n^k then MPL:=[op(MPL),n] fi od; od; MPL; # Walter Kehowski, Sep 13 2005
    # second Maple program:
    q:= n-> n=1 or numtheory[tau](n)=4:
    select(q, [$1..200])[];  # Alois P. Heinz, Dec 17 2021
  • Mathematica
    Select[Range[200], Times@@Divisors[#] == #^2 &]  (* Harvey P. Dale, Mar 27 2011 *)
  • PARI
    is(n)=n==1 || numdiv(n) == 4 \\ Charles R Greathouse IV, Oct 15 2015
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A007422(n):
        def f(x): return int(n-1+x-primepi(integer_nthroot(x,3)[0])+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 16 2024

Formula

A084110(a(n)) = 1, see also A084116. - Reinhard Zumkeller, May 12 2003
The number of terms not exceeding x is N(x) ~ x * log(log(x))/log(x) (Chau, 2004). - Amiram Eldar, Jun 29 2022

Extensions

Some numbers were omitted - thanks to Erich Friedman for pointing this out.

A048671 a(n) is the least common multiple of the proper divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 4, 3, 10, 1, 12, 1, 14, 15, 8, 1, 18, 1, 20, 21, 22, 1, 24, 5, 26, 9, 28, 1, 30, 1, 16, 33, 34, 35, 36, 1, 38, 39, 40, 1, 42, 1, 44, 45, 46, 1, 48, 7, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 60, 1, 62, 63, 32, 65, 66, 1, 68, 69, 70, 1, 72, 1, 74, 75, 76, 77, 78, 1
Offset: 1

Views

Author

Keywords

Comments

A proper divisor d of n is a divisor of n such that 1 <= d < n.
Previous name was: a(n) = q(n)/q(n-1), where q(n) = n!/A003418(n).

Examples

			8!/lcm(8) = 48 = 40320/840 while 7!/lcm(7) = 5040/420 = 12 so a(8) = 48/12 = 4.
a(5) = 1 = lcm(1,2,3,4,5)/lcm(1,5,10,10,5,1).
		

Crossrefs

Cf. A182936 gives the dual (greatest common divisor).

Programs

Formula

a(n) = A025527(n)/A025527(n-1).
a(n) = (n*A003418(n-1))/A003418(n).
a(n) = A003418(n-1)/A002944(n). [corrected by Michel Marcus, May 18 2020]
From Henry Bottomley, May 19 2000: (Start)
a(n) = n/A014963(n) = lcm(A052126(n), A032742(n)).
a(n) = n if n not a prime power, a(n) = n/p if n = p^m (i.e., a(n) = 1 if n = p). (End)
From Vladeta Jovovic, Jul 04 2002: (Start)
a(n) = n*Product_{d | n} d^mu(d).
Product_{d | n} a(d) = A007956(n). (End)
a(n) = Product_{k=1..n-1} if(gcd(n, k) > 1, 1 - exp(2*pi*i*k/n), 1), where i = sqrt(-1). - Paul Barry, Apr 15 2005
From Peter Luschny, Jun 09 2011: (Start)
a(n) = Product_{k=1..n-1} if(gcd(k,n) > 1, 2*Pi/Gamma(k/n)^2, 1).
a(n) = Product_{k=1..n-1} if(gcd(k,n) > 1, 2*sin(Pi*k/n), 1). (End)

Extensions

New definition based on a comment of David Wasserman by Peter Luschny, Mar 23 2011

A034287 Numbers whose product of divisors is larger than that of any smaller number.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 18, 20, 24, 30, 36, 48, 60, 72, 84, 90, 96, 108, 120, 168, 180, 240, 336, 360, 420, 480, 504, 540, 600, 630, 660, 672, 720, 840, 1080, 1260, 1440, 1680, 2160, 2520, 3360, 3780, 3960, 4200, 4320, 4620, 4680, 5040, 7560, 9240
Offset: 1

Views

Author

Keywords

Comments

It appears that 2 and 3 are the only terms in this sequence that are not in A034288. - T. D. Noe, Mar 10 2007
Is this the same as A067128?
a(n) = numbers m where record values occur in A007955(m); A007955(m) = product of divisors of m. a(n) = possible values of A174901(m) in increasing order, a(n) = the smallest numbers k such that A007955(k) = A174899(n). - Jaroslav Krizek, Apr 01 2010
Equals A067128 for the 105834 terms less than 10^150.

Crossrefs

Programs

  • Mathematica
    divProd[n_] := Times @@ Divisors[n]; a[1] = 1; a[n_] := a[n] = Catch[For[dp = divProd[an = a[n - 1]]; an++, True, an++, If[divProd[an] > dp, Throw[an]]]]; Table[a[n], {n, 1, 52}] (* Jean-François Alcover, Feb 01 2013 *)
    DeleteDuplicates[Table[{n,Times@@Divisors[n]},{n,10000}],GreaterEqual[#1[[2]],#2[[2]]]&] [[;;,1]] (* Harvey P. Dale, Oct 07 2023 *)
  • PARI
    A007955(n)=if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2))
    r=0;for(n=1,1e5,t=A007955(n);if(t>r,r=t;print1(n", "))) \\ Charles R Greathouse IV, Feb 01 2013

Extensions

More terms from David W. Wilson, Dec 19 2001
Showing 1-10 of 44 results. Next