cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 237 results. Next

A306671 a(n) = gcd(tau(n), pod(n)) where tau(k) = the number of the divisors of k (A000005) and pod(k) = the product of the divisors of k (A007955).

Original entry on oeis.org

1, 2, 1, 1, 1, 4, 1, 4, 3, 4, 1, 6, 1, 4, 1, 1, 1, 6, 1, 2, 1, 4, 1, 8, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 9, 1, 4, 1, 8, 1, 8, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 1, 8, 1, 8, 1, 4, 1, 12, 1, 4, 3, 1, 1, 8, 1, 2, 1, 8, 1, 12, 1, 4, 3, 2, 1, 8, 1, 10, 1, 4, 1, 12, 1, 4
Offset: 1

Views

Author

Jaroslav Krizek, Mar 04 2019

Keywords

Comments

Sequence of the smallest numbers k such that a(k) = n: 1, 2, 9, 6, 400, 12, 3136, 24, 36, 80, 123904, 60, 692224, 448, 2025, 120, ...

Examples

			For n=6: a(6) = gcd(tau(6), pod(6)) = gcd(4, 36) = 4.
		

Crossrefs

Programs

  • Magma
    [GCD(NumberOfDivisors(n), &*[d: d in Divisors(n)]): n in [1.. 100]]
    
  • PARI
    a(n) = gcd(numdiv(n), vecprod(divisors(n))); \\ Michel Marcus, Mar 04 2019

Formula

a(n) = 1 for numbers in A046642.
a(n) = tau(n) for numbers in A120736.

A175317 a(n) = Sum_{d|n} A007955(d) where A007955(m) = product of divisors of m.

Original entry on oeis.org

1, 3, 4, 11, 6, 42, 8, 75, 31, 108, 12, 1778, 14, 206, 234, 1099, 18, 5901, 20, 8116, 452, 498, 24, 333618, 131, 692, 760, 22166, 30, 810372, 32, 33867, 1104, 1176, 1238, 10085333, 38, 1466, 1538, 2568180, 42, 3112382, 44, 85690, 91386, 2142, 48, 255138610
Offset: 1

Views

Author

Jaroslav Krizek, Apr 01 2010

Keywords

Examples

			For n = 4, with b(n) = A007955(n), a(4) = b(1) + b(2) + b(4) = 1 + 2 + 8 = 11.
		

Crossrefs

Subsequences: A008864, A181388 \ {0}.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(DivisorSigma[0, #]/2) &]; Array[a, 50] (* Amiram Eldar, Oct 23 2021 *)
  • PARI
    a(n) = sumdiv(n, d, vecprod(divisors(d))); \\ Michel Marcus, Dec 09 2014 and Oct 23 2021
    
  • Python
    from math import isqrt
    from sympy import divisor_count, divisors
    def A175317(n): return sum(isqrt(d)**c if (c:=divisor_count(d)) & 1 else d**(c//2) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 24 2022

Formula

From Bernard Schott, Oct 26 2021: (Start)
a(1) = 1 (the only fixed point).
a(p) = p+1 for prime p only.
a(2^k) = A181388(k+1). (End)

Extensions

Corrected by Jaroslav Krizek, Apr 02 2010
Edited and more terms from Michel Marcus, Dec 09 2014

A336722 a(n) = gcd(tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 4, 1, 1, 1, 3, 1, 2, 1, 4, 1, 4, 1, 2, 1, 2, 1, 8, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 8, 1, 2, 3, 4, 1, 2, 1, 1, 1, 2, 1, 8, 1, 8, 1, 2, 1, 12, 1, 4, 1, 1, 1, 8, 1, 2, 1, 8, 1, 3, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 4, 1, 4, 1, 4, 1, 6, 1, 2, 1, 4, 1, 12, 1, 1, 3, 1, 1, 8, 1, 2, 1
Offset: 1

Views

Author

Jaroslav Krizek, Aug 01 2020

Keywords

Comments

a(n) = tau(n) for numbers n: 1, 6, 14, 22, 30, 38, 42, 46, 54, 56, 60, 62, 66, 70, 78, 86, 94, 96, 102, ...

Examples

			a(6) = gcd(tau(6), sigma(6), pod(6)) = gcd(4, 12, 36) = 4.
		

Crossrefs

Cf. A009205 (gcd(tau(n), sigma(n))), A306671 (gcd(tau(n), pod(n))), A306682 (gcd(sigma(n), pod(n))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A007955 (pod(n)), A336723 (lcm(tau(n), sigma(n), pod(n))).
Cf. A277521 (numbers k such that a(k) = tau(k) and simultaneously A336723(k) = pod(k)).

Programs

  • Magma
    [GCD([#Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]];
    
  • Mathematica
    a[n_] := GCD @@ {(d = DivisorSigma[0,n]), DivisorSigma[1, n], n^(d/2)}; Array[a, 100] (* Amiram Eldar, Aug 01 2020 *)
  • PARI
    A007955(n) = if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2)); \\ From A007955
    A336722(n) = gcd(A007955(n), gcd(numdiv(n), sigma(n))); \\ Antti Karttunen, Aug 10 2020

Formula

a(p) = 1 for p = primes (A000040).
a(n) = gcd(A007955(n), A009205(n)). - Antti Karttunen, Aug 10 2020

Extensions

Data section extended up to a(105) by Antti Karttunen, Aug 10 2020

A306682 a(n) = gcd(sigma(n), pod(n)) where sigma(k) = the sum of the divisors of k (A000203) and pod(k) = the product of the divisors of k (A007955).

Original entry on oeis.org

1, 1, 1, 1, 1, 12, 1, 1, 1, 2, 1, 4, 1, 4, 3, 1, 1, 3, 1, 2, 1, 4, 1, 12, 1, 2, 1, 56, 1, 72, 1, 1, 3, 2, 1, 1, 1, 4, 1, 10, 1, 48, 1, 4, 3, 4, 1, 4, 1, 1, 9, 2, 1, 24, 1, 8, 1, 2, 1, 24, 1, 4, 1, 1, 1, 144, 1, 2, 3, 16, 1, 3, 1, 2, 1, 4, 1, 24, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Jaroslav Krizek, Mar 05 2019

Keywords

Comments

See A324527(n) = the smallest numbers k such that a(k) = n.

Examples

			For n=6: a(6) = gcd(tau(6), pod(6)) = gcd(4, 36) = 4.
		

Crossrefs

Programs

  • Magma
    [GCD(SumOfDivisors(n), &*[d: d in Divisors(n)]): n in [1.. 100]]
    
  • PARI
    a(n) = my(d=divisors(n)); gcd(vecsum(d), vecprod(d)); \\ Michel Marcus, Mar 05 2019

Formula

a(n) = 1 for numbers in A014567.
a(n) = tau(n) for numbers in A324526.

A324528 a(n) = lcm(tau(n), pod(n)) where tau(k) = the number of divisors of k (A000005) and pod(n) = the product of divisors of k (A007955).

Original entry on oeis.org

1, 2, 6, 24, 10, 36, 14, 64, 27, 100, 22, 1728, 26, 196, 900, 5120, 34, 5832, 38, 24000, 1764, 484, 46, 331776, 375, 676, 2916, 65856, 58, 810000, 62, 98304, 4356, 1156, 4900, 10077696, 74, 1444, 6084, 2560000, 82, 3111696, 86, 255552, 182250, 2116, 94
Offset: 1

Views

Author

Jaroslav Krizek, Mar 05 2019

Keywords

Examples

			For n=4: a(4) = lcm(tau(4), pod(4)) = lcm(3, 8) = 24.
		

Crossrefs

Programs

  • Magma
    [LCM(NumberOfDivisors(n), &*[d: d in Divisors(n)]): n in [1.. 100]]
    
  • Mathematica
    Table[LCM[DivisorSigma[0,n],Times@@Divisors[n]],{n,50}] (* Harvey P. Dale, Aug 14 2019 *)
  • PARI
    a(n) = my(d=divisors(n)); lcm(vecprod(d), #d); \\ Michel Marcus, Mar 05 2019

Formula

a(n) = pod(n) for numbers n in A120736.
a(n) = tau(n) * pod(n) for numbers n in A046642.

A336723 a(n) = lcm(tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 6, 12, 168, 30, 36, 56, 960, 351, 900, 132, 12096, 182, 1176, 1800, 158720, 306, 75816, 380, 168000, 14112, 4356, 552, 1658880, 11625, 14196, 29160, 65856, 870, 810000, 992, 2064384, 17424, 31212, 58800, 917070336, 1406, 21660, 85176, 23040000, 1722, 6223392
Offset: 1

Views

Author

Jaroslav Krizek, Aug 01 2020

Keywords

Comments

a(n) = pod(n) for numbers n: 1, 6, 30, 66, 84, 102, 120, 210, 270, 318, 330, 420, 462, 510, 546, 570, 642, ...

Examples

			a(6) = lcm(tau(6), sigma(6), pod(6)) = lcm(4, 12, 36) = 36.
		

Crossrefs

Cf. A009278 (lcm(tau(n), sigma(n))), A324528 (lcm(tau(n), pod(n))), A324529 (lcm(sigma(n), pod(n))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A007955 (pod(n)), A336722 (gcd(tau(n), sigma(n), pod(n))).
Cf. A277521 (numbers k such that a(k) = pod(k) and simultaneously A336722(k) = tau(k)).

Programs

  • Magma
    [LCM([#Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]];
    
  • Mathematica
    a[n_] := LCM @@ {(d = DivisorSigma[0,n]), DivisorSigma[1, n], n^(d/2)}; Array[a, 50] (* Amiram Eldar, Aug 01 2020 *)
  • PARI
    a(n) = my(d=divisors(n)); lcm([#d, vecsum(d), vecprod(d)]); \\ Michel Marcus, Aug 12 2020

Formula

a(p) = p^2 + p for p = primes (A000040).

A174895 a(n) = possible values of A007955(m) in increasing order, where A007955(m) = product of divisors of m.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 11, 13, 17, 19, 23, 27, 29, 31, 36, 37, 41, 43, 47, 53, 59, 61, 64, 67, 71, 73, 79, 83, 89, 97, 100, 101, 103, 107, 109, 113, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 196, 197, 199, 211, 223, 225, 227, 229, 233, 239
Offset: 1

Views

Author

Jaroslav Krizek, Apr 01 2010

Keywords

Comments

a(n) = all values of A007955(m) in increasing order; all terms of sequence A007955 occur only once. Complement of A174896(n). A174897(a(n)) = 1, A174898(a(n)) = 0.
For every prime p, p and p^3 occur, as does the square of every semiprime pq with p and q distinct. - T. D. Noe, Oct 22 2010
For every prime p, every power p^t occurs, where t is a triangular number.

Programs

  • Mathematica
    nn=1000; Reap[Do[prod=Times@@Divisors[n]; If[prod<=nn, Sow[prod]], {n,nn}]][[2,1]] (* T. D. Noe, Oct 22 2010 *)
  • PARI
    list(lim)=my(v=List(primes([2,lim]))); for(k=1,sqrtint(lim\=1), listput(v,factorback(divisors(k)))); forprime(p=2,sqrtnint(lim,3), listput(v, p^3)); select(k->k<=lim, Set(v)) \\ Charles R Greathouse IV, Sep 22 2015

Extensions

Corrected by Jaroslav Krizek, Apr 02 2010
Corrected and extended by T. D. Noe, Oct 22 2010

A184390 a(n) = sum of numbers from 1 to pi(n), where pi(n) = A007955(n).

Original entry on oeis.org

1, 3, 6, 36, 15, 666, 28, 2080, 378, 5050, 66, 1493856, 91, 19306, 25425, 524800, 153, 17009028, 190, 32004000, 97461, 117370, 276, 55037822976, 7875, 228826, 266085, 240956128, 435, 328050405000
Offset: 1

Views

Author

Jaroslav Krizek, Jan 12 2011

Keywords

Examples

			For n = 6; pi(6) = 36; a(n) = (1/2)*36*37 = 666.
		

Crossrefs

Programs

  • Mathematica
    # (#+1)/2&/@Array[Times@@Divisors[#]&,40] (* Harvey P. Dale, Oct 05 2012 *)
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A184390(n): return (m:=((isqrt(n) if (c:=divisor_count(n)) & 1 else 1)*n**(c//2)))*(m+1)//2 # Chai Wah Wu, Jun 25 2022

Formula

a(n) = Sum_{i = 1..pi(n)} i = A000217(A007955(n)) = (1/2)*A007955(n)*(A007955(n)+1).

A184391 a(n) = product of numbers from 1 to A007955(n).

Original entry on oeis.org

1, 2, 6, 40320, 120, 371993326789901217467999448150835200000000, 5040, 126886932185884164103433389335161480802865516174545192198801894375214704230400000000000000, 10888869450418352160768000000
Offset: 1

Views

Author

Jaroslav Krizek, Jan 12 2011

Keywords

Crossrefs

Programs

  • Mathematica
    A184391[n_] := Product[i, {i, 1, n^(DivisorSigma[0, n]/2)}]; Table[A184391[n], {n, 1, 9}] (* Robert P. P. McKone, Feb 04 2021 *)
  • Python
    from math import isqrt, factorial
    from sympy import divisor_count
    def A184391(n): return factorial((isqrt(n) if (c:=divisor_count(n)) & 1 else 1)*n**(c//2)) # Chai Wah Wu, Jun 25 2022

Formula

a(n) = A007955(n)! = A000142(A007955(n)).

Extensions

a(9) from Robert P. P. McKone, Feb 04 2021

A324529 a(n) = lcm(sigma(n), pod(n)) where sigma(k) = the sum of divisors of k (A000203) and pod(n) = the product of divisors of k (A007955).

Original entry on oeis.org

1, 6, 12, 56, 30, 36, 56, 960, 351, 900, 132, 12096, 182, 1176, 1800, 31744, 306, 75816, 380, 168000, 14112, 4356, 552, 1658880, 3875, 14196, 29160, 21952, 870, 810000, 992, 2064384, 17424, 31212, 58800, 917070336, 1406, 21660, 85176, 23040000, 1722, 6223392
Offset: 1

Views

Author

Jaroslav Krizek, Mar 05 2019

Keywords

Examples

			For n=4: a(4) = lcm(sigma(4), pod(4)) = lcm(7, 8) = 56.
		

Crossrefs

Programs

  • Magma
    [LCM(SumOfDivisors(n), &*[d: d in Divisors(n)]): n in [1.. 1000]]
    
  • PARI
    a(n) = my(d=divisors(n)); lcm(vecsum(d), vecprod(d)); \\ Michel Marcus, Mar 05 2019

Formula

a(n) = pod(n) for numbers n in A145551.
a(n) = sigma(n) * pod(n) for numbers n in A014567.
Showing 1-10 of 237 results. Next