A306671 a(n) = gcd(tau(n), pod(n)) where tau(k) = the number of the divisors of k (A000005) and pod(k) = the product of the divisors of k (A007955).
1, 2, 1, 1, 1, 4, 1, 4, 3, 4, 1, 6, 1, 4, 1, 1, 1, 6, 1, 2, 1, 4, 1, 8, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 9, 1, 4, 1, 8, 1, 8, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 1, 8, 1, 8, 1, 4, 1, 12, 1, 4, 3, 1, 1, 8, 1, 2, 1, 8, 1, 12, 1, 4, 3, 2, 1, 8, 1, 10, 1, 4, 1, 12, 1, 4
Offset: 1
Keywords
Examples
For n=6: a(6) = gcd(tau(6), pod(6)) = gcd(4, 36) = 4.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Programs
-
Magma
[GCD(NumberOfDivisors(n), &*[d: d in Divisors(n)]): n in [1.. 100]]
-
PARI
a(n) = gcd(numdiv(n), vecprod(divisors(n))); \\ Michel Marcus, Mar 04 2019
Comments