cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A184389 a(n) = Sum_{k=1..tau(n)} k, where tau is the number of divisors of n (A000005).

Original entry on oeis.org

1, 3, 3, 6, 3, 10, 3, 10, 6, 10, 3, 21, 3, 10, 10, 15, 3, 21, 3, 21, 10, 10, 3, 36, 6, 10, 10, 21, 3, 36, 3, 21, 10, 10, 10, 45, 3, 10, 10, 36, 3, 36, 3, 21, 21, 10, 3, 55, 6, 21, 10, 21, 3, 36, 10, 36, 10, 10, 3, 78, 3, 10, 21, 28, 10, 36, 3, 21, 10, 36, 3, 78
Offset: 1

Views

Author

Jaroslav Krizek, Jan 12 2011

Keywords

Comments

Length of row n in triangle A187207. - Omar E. Pol, Aug 07 2011
Number of pairs of even divisors of 2n, (d1,d2), such that d1<=d2. - Wesley Ivan Hurt, Aug 24 2020

Examples

			For n = 4; tau(4) = 3; a(4) = 1+2+3 = 6.
		

Crossrefs

Cf. A000005 (tau), A000217 (triangular numbers).

Programs

Formula

a(n) = A000217(A000005(n)) = (1/2)*A000005(n)*(A000005(n)+1).
a(n) = A066446(n) + A000005(n) = A035116(n) - A066446(n). - Reinhard Zumkeller, Sep 08 2015
Dirichlet g.f.: zeta(s)^2*(zeta(s)^2 + zeta(2*s))/(2*zeta(2*s)). - Ilya Gutkovskiy, Jun 25 2016
a(n) = Sum_{d1|(2*n), d2|(2*n), d1 and d2 even, d1<=d2} 1. - Wesley Ivan Hurt, Aug 24 2020
a(n) = Sum_{d|n} A018892(d). - Daniel Suteu, Jan 08 2021
a(n) = Sum_{d|n} A135539(n,d). - Ridouane Oudra, May 29 2025
a(n) = A337362(n) + A129308(n). - Ridouane Oudra, May 30 2025

A184387 a(n) = sum of numbers from 1 to sigma(n), where sigma(n) = A000203(n).

Original entry on oeis.org

1, 6, 10, 28, 21, 78, 36, 120, 91, 171, 78, 406, 105, 300, 300, 496, 171, 780, 210, 903, 528, 666, 300, 1830, 496, 903, 820, 1596, 465, 2628, 528, 2016, 1176, 1485, 1176, 4186, 741, 1830, 1596, 4095, 903, 4656, 990, 3570, 3081, 2628, 1176, 7750, 1653, 4371
Offset: 1

Views

Author

Jaroslav Krizek, Jan 12 2011

Keywords

Examples

			For n = 4; sigma(4) = 7; a(4) = 1+2+3+4+5+6+7 = 28.
		

Crossrefs

Programs

Formula

a(n) = Sum_{i = 1..sigma(n)} i = A000217(A000203(n)) = A000203(n)*(A000203(n) + 1)/2.
Sum_{k=1..n} a(k) = (5*zeta(3)/12) * n^3 + O(n^2*log(n)^2). - Amiram Eldar, Dec 08 2022

A184388 a(n) = product of numbers from 1 to sigma(n), where sigma(n) = A000203(n).

Original entry on oeis.org

1, 6, 24, 5040, 720, 479001600, 40320, 1307674368000, 6227020800, 6402373705728000, 479001600, 304888344611713860501504000000, 87178291200, 620448401733239439360000, 620448401733239439360000, 8222838654177922817725562880000000, 6402373705728000
Offset: 1

Views

Author

Jaroslav Krizek, Jan 12 2011

Keywords

Examples

			For n = 4; sigma(4) = 7; a(n) = 1*2*3*4*5*6*7 = 5040.
		

Crossrefs

Programs

Formula

a(n) = sigma(n)! = Product_(i = 1,…,sigma(n)) i = A000142(A000203(n)) = (A000203(n))!.

Extensions

Corrected and extended by Harvey P. Dale, Apr 09 2019

A184391 a(n) = product of numbers from 1 to A007955(n).

Original entry on oeis.org

1, 2, 6, 40320, 120, 371993326789901217467999448150835200000000, 5040, 126886932185884164103433389335161480802865516174545192198801894375214704230400000000000000, 10888869450418352160768000000
Offset: 1

Views

Author

Jaroslav Krizek, Jan 12 2011

Keywords

Crossrefs

Programs

  • Mathematica
    A184391[n_] := Product[i, {i, 1, n^(DivisorSigma[0, n]/2)}]; Table[A184391[n], {n, 1, 9}] (* Robert P. P. McKone, Feb 04 2021 *)
  • Python
    from math import isqrt, factorial
    from sympy import divisor_count
    def A184391(n): return factorial((isqrt(n) if (c:=divisor_count(n)) & 1 else 1)*n**(c//2)) # Chai Wah Wu, Jun 25 2022

Formula

a(n) = A007955(n)! = A000142(A007955(n)).

Extensions

a(9) from Robert P. P. McKone, Feb 04 2021
Showing 1-4 of 4 results.