cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A184389 a(n) = Sum_{k=1..tau(n)} k, where tau is the number of divisors of n (A000005).

Original entry on oeis.org

1, 3, 3, 6, 3, 10, 3, 10, 6, 10, 3, 21, 3, 10, 10, 15, 3, 21, 3, 21, 10, 10, 3, 36, 6, 10, 10, 21, 3, 36, 3, 21, 10, 10, 10, 45, 3, 10, 10, 36, 3, 36, 3, 21, 21, 10, 3, 55, 6, 21, 10, 21, 3, 36, 10, 36, 10, 10, 3, 78, 3, 10, 21, 28, 10, 36, 3, 21, 10, 36, 3, 78
Offset: 1

Views

Author

Jaroslav Krizek, Jan 12 2011

Keywords

Comments

Length of row n in triangle A187207. - Omar E. Pol, Aug 07 2011
Number of pairs of even divisors of 2n, (d1,d2), such that d1<=d2. - Wesley Ivan Hurt, Aug 24 2020

Examples

			For n = 4; tau(4) = 3; a(4) = 1+2+3 = 6.
		

Crossrefs

Cf. A000005 (tau), A000217 (triangular numbers).

Programs

Formula

a(n) = A000217(A000005(n)) = (1/2)*A000005(n)*(A000005(n)+1).
a(n) = A066446(n) + A000005(n) = A035116(n) - A066446(n). - Reinhard Zumkeller, Sep 08 2015
Dirichlet g.f.: zeta(s)^2*(zeta(s)^2 + zeta(2*s))/(2*zeta(2*s)). - Ilya Gutkovskiy, Jun 25 2016
a(n) = Sum_{d1|(2*n), d2|(2*n), d1 and d2 even, d1<=d2} 1. - Wesley Ivan Hurt, Aug 24 2020
a(n) = Sum_{d|n} A018892(d). - Daniel Suteu, Jan 08 2021
a(n) = Sum_{d|n} A135539(n,d). - Ridouane Oudra, May 29 2025
a(n) = A337362(n) + A129308(n). - Ridouane Oudra, May 30 2025

A206032 a(n) = Product_{d|n} sigma(d) where sigma = A000203.

Original entry on oeis.org

1, 3, 4, 21, 6, 144, 8, 315, 52, 324, 12, 28224, 14, 576, 576, 9765, 18, 73008, 20, 95256, 1024, 1296, 24, 25401600, 186, 1764, 2080, 225792, 30, 26873856, 32, 615195, 2304, 2916, 2304, 1302170688, 38, 3600, 3136, 128595600, 42, 84934656, 44, 762048, 584064
Offset: 1

Views

Author

Jaroslav Krizek, Feb 03 2012

Keywords

Comments

Sequence is not the same as A206031(n): a(66) = 429981696, A206031(66) = 35831808.
In sequence a(n) are multiplied all values of sigma(d) of all divisors d of numbers n, in sequence A206031 are multiplied only distinct values of sigma(d) of all divisors d of numbers n.

Examples

			For n=6 -> divisors d of 6: 1,2,3,6; corresponding values k of sigma(d): 1,3,4,12; a(6) = Product of k = 1*3*4*12 = 144. For n=66 -> divisors d of 66: 1,2,3,6,11,22,33,66; corresponding values k of sigma(d): 1,3,4,12,12,36,48,144; a(66) = Product of k = 1*3*4*12*12*36*48*144 = 429981696.
		

Crossrefs

Programs

  • Mathematica
    Table[Times @@ DivisorSigma[1, Divisors[n]], {n, 100}] (* T. D. Noe, Feb 10 2012 *)
  • PARI
    a(n)=my(d=divisors(n));prod(i=2,#d,sigma(d[i])) \\ Charles R Greathouse IV, Feb 19 2013

Formula

a(p) = p+1, a(pq) = ((p+1)*(q+1))^2 for p, q = distinct primes.

A184387 a(n) = sum of numbers from 1 to sigma(n), where sigma(n) = A000203(n).

Original entry on oeis.org

1, 6, 10, 28, 21, 78, 36, 120, 91, 171, 78, 406, 105, 300, 300, 496, 171, 780, 210, 903, 528, 666, 300, 1830, 496, 903, 820, 1596, 465, 2628, 528, 2016, 1176, 1485, 1176, 4186, 741, 1830, 1596, 4095, 903, 4656, 990, 3570, 3081, 2628, 1176, 7750, 1653, 4371
Offset: 1

Views

Author

Jaroslav Krizek, Jan 12 2011

Keywords

Examples

			For n = 4; sigma(4) = 7; a(4) = 1+2+3+4+5+6+7 = 28.
		

Crossrefs

Programs

Formula

a(n) = Sum_{i = 1..sigma(n)} i = A000217(A000203(n)) = A000203(n)*(A000203(n) + 1)/2.
Sum_{k=1..n} a(k) = (5*zeta(3)/12) * n^3 + O(n^2*log(n)^2). - Amiram Eldar, Dec 08 2022

A184390 a(n) = sum of numbers from 1 to pi(n), where pi(n) = A007955(n).

Original entry on oeis.org

1, 3, 6, 36, 15, 666, 28, 2080, 378, 5050, 66, 1493856, 91, 19306, 25425, 524800, 153, 17009028, 190, 32004000, 97461, 117370, 276, 55037822976, 7875, 228826, 266085, 240956128, 435, 328050405000
Offset: 1

Views

Author

Jaroslav Krizek, Jan 12 2011

Keywords

Examples

			For n = 6; pi(6) = 36; a(n) = (1/2)*36*37 = 666.
		

Crossrefs

Programs

  • Mathematica
    # (#+1)/2&/@Array[Times@@Divisors[#]&,40] (* Harvey P. Dale, Oct 05 2012 *)
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A184390(n): return (m:=((isqrt(n) if (c:=divisor_count(n)) & 1 else 1)*n**(c//2)))*(m+1)//2 # Chai Wah Wu, Jun 25 2022

Formula

a(n) = Sum_{i = 1..pi(n)} i = A000217(A007955(n)) = (1/2)*A007955(n)*(A007955(n)+1).

A184391 a(n) = product of numbers from 1 to A007955(n).

Original entry on oeis.org

1, 2, 6, 40320, 120, 371993326789901217467999448150835200000000, 5040, 126886932185884164103433389335161480802865516174545192198801894375214704230400000000000000, 10888869450418352160768000000
Offset: 1

Views

Author

Jaroslav Krizek, Jan 12 2011

Keywords

Crossrefs

Programs

  • Mathematica
    A184391[n_] := Product[i, {i, 1, n^(DivisorSigma[0, n]/2)}]; Table[A184391[n], {n, 1, 9}] (* Robert P. P. McKone, Feb 04 2021 *)
  • Python
    from math import isqrt, factorial
    from sympy import divisor_count
    def A184391(n): return factorial((isqrt(n) if (c:=divisor_count(n)) & 1 else 1)*n**(c//2)) # Chai Wah Wu, Jun 25 2022

Formula

a(n) = A007955(n)! = A000142(A007955(n)).

Extensions

a(9) from Robert P. P. McKone, Feb 04 2021

A206031 a(n) = product of numbers k <= sigma(n) such that k = sigma(d) for any divisor d of n where sigma = A000203.

Original entry on oeis.org

1, 3, 4, 21, 6, 144, 8, 315, 52, 324, 12, 28224, 14, 576, 576, 9765, 18, 73008, 20, 95256, 1024, 1296, 24, 25401600, 186, 1764, 2080, 225792, 30, 26873856, 32, 615195, 2304, 2916, 2304, 1302170688, 38, 3600, 3136, 128595600, 42, 84934656, 44, 762048, 584064
Offset: 1

Views

Author

Jaroslav Krizek, Feb 03 2012

Keywords

Comments

Sequence is not the same as A206032(n): a(66) = 35831808, A206032(66) = 429981696.
In sequence A206032 are multiplied all values of sigma(d) of all divisors d of numbers n, in sequence a(n) are multiplied only distinct values of sigma(d) of all divisors d of numbers n.

Examples

			For n=6 -> divisors d of 6: 1,2,3,6; corresponding values of sigma(d): 1,3,4,12; a(6) = Product of k = 1*3*4*12 = 144. For n=66 -> divisors d of 66: 1,2,3,6,11,22,33,66; corresponding values of sigma(d): 1,3,4,12,12,36,48,144; a(66) = Product of k = 1*3*4*12*36*48*144 = 35831808.
		

Crossrefs

Programs

  • Mathematica
    Table[Times @@ Union[DivisorSigma[1, Divisors[n]]], {n, 100}] (* T. D. Noe, Feb 10 2012 *)
  • PARI
    a(n)=my(d=vecsort(apply(sigma,divisors(n)),,8));prod(i=2,#d,d[i]) \\ Charles R Greathouse IV, Feb 19 2013

Formula

a(p) = p+1, a(pq) = ((p+1)*(q+1))^2 for p, q = distinct primes.

A206033 a(1) =1; for n>=1: a(n) = product of numbers k <= sigma(n) such that k is not equal to sigma(d) for any divisor d of n where sigma = A000203.

Original entry on oeis.org

1, 2, 6, 240, 120, 3326400, 5040, 4151347200, 119750400, 19760412672000, 39916800, 10802449851605508096000000, 6227020800, 1077167364120207360000, 1077167364120207360000, 842072570832352567099392000000, 355687428096000
Offset: 1

Views

Author

Jaroslav Krizek, Feb 03 2012

Keywords

Comments

In sequence A206032 are multiplied all values of sigma(d) of all divisors d of numbers n, in sequence A206031 are multiplied only distinct values of sigma(d) of all divisors d of numbers n and in sequence a(n) are multiplied numbers k (1<=k<=sigma(n)) such that sigma(d) = k has no solution for neither divisor d of number n.

Examples

			For n=6 -> divisors d of 6: 1,2,3,6; corresponding values of sigma(d): 1,3,4,12; a(6) = Product of k = 2*5*6*7*8*9*10*11 = 3326400.
		

Crossrefs

Programs

  • Mathematica
    Table[Times @@ Complement[Range[DivisorSigma[1, n]], DivisorSigma[1, Divisors[n]]], {n, 100}] (* T. D. Noe, Feb 10 2012 *)

A309548 Numbers k such that sigma(k)! - 1 is prime, where sigma is A000203.

Original entry on oeis.org

2, 3, 4, 5, 6, 11, 13, 21, 29, 31, 37, 170, 180, 214, 234, 265, 362, 369, 10734, 14318, 19679, 19876, 39636, 48784, 62517, 76225, 77277, 83629, 85519, 90649, 92287
Offset: 1

Views

Author

Hauke Löffler, Aug 07 2019

Keywords

Examples

			2 is a term because sigma(2) = 3. 3! - 1 = 5, a prime.
6 is a term because sigma(6) = 12. 12! - 1 = 479001599, a prime.
		

Crossrefs

Programs

  • PARI
    isok(n) = isprime(sigma(n)!-1); \\ Michel Marcus, Aug 07 2019
  • SageMath
    [n for n in range(1,150) if is_prime(factorial(sigma(n))-1)]
    

Extensions

a(12)-a(24) from Daniel Suteu, Aug 07 2019
a(25)-a(31) from Amiram Eldar, May 14 2023
Showing 1-8 of 8 results.