cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A280085 Partial sums of A206032 (Product_{d|n} sigma(d)).

Original entry on oeis.org

1, 4, 8, 29, 35, 179, 187, 502, 554, 878, 890, 29114, 29128, 29704, 30280, 40045, 40063, 113071, 113091, 208347, 209371, 210667, 210691, 25612291, 25612477, 25614241, 25616321, 25842113, 25842143, 52715999, 52716031, 53331226, 53333530, 53336446, 53338750
Offset: 1

Views

Author

Jaroslav Krizek, Dec 26 2016

Keywords

Comments

sigma(n) is the sum of the divisors of n (A000203).

Crossrefs

Cf. A000203, A007429, A206032, A280077 (partial sums of A007429), A280086 (partial products of A206032).

Programs

  • Magma
    [&+[&*[SumOfDivisors(d): d in Divisors(k)]: k in [1..n]]: n in [1..100]]
  • Mathematica
    Accumulate@ Array[Product[DivisorSigma[1, d], {d, Divisors@ #}] &, 35] (* Michael De Vlieger, Dec 26 2016 *)

Formula

a(n) = Sum_{i=1..n} A206032(i).

A280086 Partial products of A206032 (Product_{d|n} sigma(d)).

Original entry on oeis.org

1, 3, 12, 252, 1512, 217728, 1741824, 548674560, 28531077120, 9244068986880, 110928827842560, 3130855237028413440, 43831973318397788160, 25247216631397125980160, 14542396779684744564572160, 142006504553621530673047142400, 2556117081965187552114848563200
Offset: 1

Views

Author

Jaroslav Krizek, Dec 26 2016

Keywords

Comments

sigma(n) is the sum of the divisors of n (A000203).

Crossrefs

Cf. A000203, A007429, A206032, A280078 (partial products of A007429), A280085 (partial sums of A206032).

Programs

  • Magma
    [&*[&*[SumOfDivisors(d): d in Divisors(k)]: k in [1..n]]: n in [1..100]]
  • Mathematica
    FoldList[Times[#1, #2] &, Array[Product[DivisorSigma[1, d], {d, Divisors@ #}] &, 17]] (* Michael De Vlieger, Dec 26 2016 *)

Formula

a(n) = Product_{i=1..n} A206032(i).

A266265 Product of products of divisors of divisors of n.

Original entry on oeis.org

1, 2, 3, 16, 5, 216, 7, 1024, 81, 1000, 11, 2985984, 13, 2744, 3375, 1048576, 17, 34012224, 19, 64000000, 9261, 10648, 23, 63403380965376, 625, 17576, 59049, 481890304, 29, 19683000000000, 31, 34359738368, 35937, 39304, 42875, 4738381338321616896, 37, 54872
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2015

Keywords

Comments

a(n) = Product_{d|n} A007955(d) where A007955(m) = product of divisors of m.
From G. C. Greubel, Dec 31 2015: (Start)
for n>=1: 10^3|a(10*n), 10^6|a(20*n), 10^9|a(30*n).
for n>=0: 10^6|a(60*n+50), 10^9|a(60*n+70). (End)

Examples

			For n = 6; with b(n) = A007955(n); a(6) = b(1)*b(2)*b(3)*b(6) = 1*2*3*36 = 216.
		

Crossrefs

Cf. A007955 (product of divisors of n), A175317 (sum of products of divisors of divisors of n), A206032 (product of sums of divisors of divisors of n).

Programs

  • Magma
    [&*[&*[b: b in Divisors(d)]: d in Divisors(n)]: n in [1..100]]
    
  • Maple
    A266265 := proc(n)
        mul( A007955(d),d=numtheory[divisors](n)) ;
    end proc:
    seq(A266265(n),n=1..10) ; # R. J. Mathar, Feb 13 2019
  • Mathematica
    Table[Product[Times @@ Divisors@ d, {d, Divisors@ n}], {n, 38}] (* Michael De Vlieger, Dec 31 2015 *)
  • PARI
    a(n) = {my(d = divisors(n)); prod(k=1, #d, dd = divisors(d[k]); prod(kk=1,#dd, dd[kk]));} \\ Michel Marcus, Dec 27 2015

Formula

a(p) = p for p = prime.
a(n) = Product_{d|n} d^tau(n/d). - Ridouane Oudra, Apr 09 2023

A175317 a(n) = Sum_{d|n} A007955(d) where A007955(m) = product of divisors of m.

Original entry on oeis.org

1, 3, 4, 11, 6, 42, 8, 75, 31, 108, 12, 1778, 14, 206, 234, 1099, 18, 5901, 20, 8116, 452, 498, 24, 333618, 131, 692, 760, 22166, 30, 810372, 32, 33867, 1104, 1176, 1238, 10085333, 38, 1466, 1538, 2568180, 42, 3112382, 44, 85690, 91386, 2142, 48, 255138610
Offset: 1

Views

Author

Jaroslav Krizek, Apr 01 2010

Keywords

Examples

			For n = 4, with b(n) = A007955(n), a(4) = b(1) + b(2) + b(4) = 1 + 2 + 8 = 11.
		

Crossrefs

Subsequences: A008864, A181388 \ {0}.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(DivisorSigma[0, #]/2) &]; Array[a, 50] (* Amiram Eldar, Oct 23 2021 *)
  • PARI
    a(n) = sumdiv(n, d, vecprod(divisors(d))); \\ Michel Marcus, Dec 09 2014 and Oct 23 2021
    
  • Python
    from math import isqrt
    from sympy import divisor_count, divisors
    def A175317(n): return sum(isqrt(d)**c if (c:=divisor_count(d)) & 1 else d**(c//2) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 24 2022

Formula

From Bernard Schott, Oct 26 2021: (Start)
a(1) = 1 (the only fixed point).
a(p) = p+1 for prime p only.
a(2^k) = A181388(k+1). (End)

Extensions

Corrected by Jaroslav Krizek, Apr 02 2010
Edited and more terms from Michel Marcus, Dec 09 2014

A206031 a(n) = product of numbers k <= sigma(n) such that k = sigma(d) for any divisor d of n where sigma = A000203.

Original entry on oeis.org

1, 3, 4, 21, 6, 144, 8, 315, 52, 324, 12, 28224, 14, 576, 576, 9765, 18, 73008, 20, 95256, 1024, 1296, 24, 25401600, 186, 1764, 2080, 225792, 30, 26873856, 32, 615195, 2304, 2916, 2304, 1302170688, 38, 3600, 3136, 128595600, 42, 84934656, 44, 762048, 584064
Offset: 1

Views

Author

Jaroslav Krizek, Feb 03 2012

Keywords

Comments

Sequence is not the same as A206032(n): a(66) = 35831808, A206032(66) = 429981696.
In sequence A206032 are multiplied all values of sigma(d) of all divisors d of numbers n, in sequence a(n) are multiplied only distinct values of sigma(d) of all divisors d of numbers n.

Examples

			For n=6 -> divisors d of 6: 1,2,3,6; corresponding values of sigma(d): 1,3,4,12; a(6) = Product of k = 1*3*4*12 = 144. For n=66 -> divisors d of 66: 1,2,3,6,11,22,33,66; corresponding values of sigma(d): 1,3,4,12,12,36,48,144; a(66) = Product of k = 1*3*4*12*36*48*144 = 35831808.
		

Crossrefs

Programs

  • Mathematica
    Table[Times @@ Union[DivisorSigma[1, Divisors[n]]], {n, 100}] (* T. D. Noe, Feb 10 2012 *)
  • PARI
    a(n)=my(d=vecsort(apply(sigma,divisors(n)),,8));prod(i=2,#d,d[i]) \\ Charles R Greathouse IV, Feb 19 2013

Formula

a(p) = p+1, a(pq) = ((p+1)*(q+1))^2 for p, q = distinct primes.

A206033 a(1) =1; for n>=1: a(n) = product of numbers k <= sigma(n) such that k is not equal to sigma(d) for any divisor d of n where sigma = A000203.

Original entry on oeis.org

1, 2, 6, 240, 120, 3326400, 5040, 4151347200, 119750400, 19760412672000, 39916800, 10802449851605508096000000, 6227020800, 1077167364120207360000, 1077167364120207360000, 842072570832352567099392000000, 355687428096000
Offset: 1

Views

Author

Jaroslav Krizek, Feb 03 2012

Keywords

Comments

In sequence A206032 are multiplied all values of sigma(d) of all divisors d of numbers n, in sequence A206031 are multiplied only distinct values of sigma(d) of all divisors d of numbers n and in sequence a(n) are multiplied numbers k (1<=k<=sigma(n)) such that sigma(d) = k has no solution for neither divisor d of number n.

Examples

			For n=6 -> divisors d of 6: 1,2,3,6; corresponding values of sigma(d): 1,3,4,12; a(6) = Product of k = 2*5*6*7*8*9*10*11 = 3326400.
		

Crossrefs

Programs

  • Mathematica
    Table[Times @@ Complement[Range[DivisorSigma[1, n]], DivisorSigma[1, Divisors[n]]], {n, 100}] (* T. D. Noe, Feb 10 2012 *)

A280114 Partial sums of A175317 (Sum_{d|n} pod(d)).

Original entry on oeis.org

1, 4, 8, 19, 25, 67, 75, 150, 181, 289, 301, 2079, 2093, 2299, 2533, 3632, 3650, 9551, 9571, 17687, 18139, 18637, 18661, 352279, 352410, 353102, 353862, 376028, 376058, 1186430, 1186462, 1220329, 1221433, 1222609, 1223847, 11309180, 11309218, 11310684
Offset: 1

Views

Author

Jaroslav Krizek, Dec 26 2016

Keywords

Comments

pod(n) is the product of the divisors of n (A007955).

Crossrefs

Cf. A007955, A175317, A206032, A280085 (partial sums of A206032), A280115 (partial products of A175317).

Programs

  • Magma
    [&+[&+[&*[b: b in Divisors(d)]: d in Divisors(k)]: k in [1..n]]: n in [1..1000]];
  • Mathematica
    Accumulate@ Array[Sum[Times @@ Divisors@ d, {d, Divisors@ #}] &, 38] (* Michael De Vlieger, Dec 26 2016 *)

Formula

a(n) = Sum_{i=1..n} A175317(i).

A280115 Partial products of A175317 (Sum_{d|n} pod(d)).

Original entry on oeis.org

1, 3, 12, 132, 792, 33264, 266112, 19958400, 618710400, 66820723200, 801848678400, 1425686950195200, 19959617302732800, 4111681164362956800, 962133392460931891200, 1057384598314564148428800, 19032922769662154671718400, 112313277263776374717810278400
Offset: 1

Views

Author

Jaroslav Krizek, Dec 26 2016

Keywords

Comments

pod(n) is the product of the divisors of n (A007955).

Crossrefs

Cf. A007955, A175317, A206032, A280086 (partial products of A206032), A280114 (partial sums of A175317).

Programs

  • Magma
    [&*[&+[&*[b: b in Divisors(d)]: d in Divisors(k)]: k in [1..n]]: n in [1..1000]]
  • Mathematica
    FoldList[Times[#1, #2] &, Array[Sum[Times @@ Divisors@ d, {d, Divisors@ #}] &, 18]] (* Michael De Vlieger, Dec 26 2016 *)

Formula

a(n) = Product_{i=1..n} A175317(i).

A290478 Triangle read by rows in which row n lists the sum of the divisors of each divisor of n.

Original entry on oeis.org

1, 1, 3, 1, 4, 1, 3, 7, 1, 6, 1, 3, 4, 12, 1, 8, 1, 3, 7, 15, 1, 4, 13, 1, 3, 6, 18, 1, 12, 1, 3, 4, 7, 12, 28, 1, 14, 1, 3, 8, 24, 1, 4, 6, 24, 1, 3, 7, 15, 31, 1, 18, 1, 3, 4, 12, 13, 39, 1, 20, 1, 3, 7, 6, 18, 42, 1, 4, 8, 32, 1, 3, 12, 36, 1, 24, 1, 3, 4, 7
Offset: 1

Views

Author

Michel Lagneau, Aug 03 2017

Keywords

Comments

Or, in the triangle A027750(n), replace each element with the sum of its divisors.
The row whose index x is a prime power p^m (p prime and m >= 0) is equal to (1, sigma(p), sigma(p^2), ..., sigma(p^(m-1))).
We observe the following properties of row n when n is the product of k distinct primes, k = 1,2,...:
when n = prime(m), row n = (1, prime(m)+1);
when n is the product of two distinct primes p < q, row n = (1, p+1, q+1,(p+1)(q+1));
when n is the product of three distinct primes p < q < r, row n = (1, p+1, q+1, r+1, (p+1)(q+1), (p+1)(r+1), (q+1)(r+1), sigma(p*q*r));

Examples

			Row 6 is (a(11), a(12), a(13), a(14)) = (1, 3, 4, 12) because sigma(A027750(11))= sigma(1) = 1, sigma(A027750(12))= sigma(2) = 3, sigma(A027750(13))= sigma(3) = 4 and sigma(A027750(14)) = sigma(6) = 12.
Triangle begins:
  1;
  1,  3;
  1,  4;
  1,  3,  7;
  1,  6;
  1,  3,  4, 12;
  1,  8;
  1,  3,  7, 15;
  1,  4, 13;
  1,  3,  6, 18;
  ...
		

Crossrefs

Cf. A007429 (row sums), A206032 (row products).

Programs

  • Magma
    [[SumOfDivisors(d): d in Divisors(n)]: n in [1..20]]; // Vincenzo Librandi, Sep 08 2017
  • Maple
    with(numtheory):nn:=100:
    for n from 1 to nn do:
      d1:=divisors(n):n1:=nops(d1):
       for i from 1 to n1 do:
         s:=sigma(d1[i]):
         printf(`%d, `,s):
       od:
    od:
  • Mathematica
    Array[DivisorSigma[1, Divisors@ #] &, 24] // Flatten (* Michael De Vlieger, Aug 07 2017 *)
  • PARI
    row(n) = apply(sigma, divisors(n)); \\ Michel Marcus, Dec 27 2021
    

Formula

a(n) = sigma(A027750(n)).

A325030 a(n) = Product_{d|n} (sigma(d)*pod(d)) where sigma(k) = the sum of the divisors of k (A000203) and pod(k) = the product of the divisors of k (A007955).

Original entry on oeis.org

1, 6, 12, 336, 30, 31104, 56, 322560, 4212, 324000, 132, 84276412416, 182, 1580544, 1944000, 10239344640, 306, 2483164449792, 380, 6096384000000, 9483264, 13799808, 552, 1610547321930095001600, 116250, 31004064, 122821920, 108806975520768, 870
Offset: 1

Views

Author

Jaroslav Krizek, Apr 25 2019

Keywords

Comments

n divides a(n) for all n.

Examples

			a(6) = (sigma(1)*pod(1)) * (sigma(2)*pod(2)) * (sigma(3)*pod(3)) * (sigma(6)*pod(6)) = (1*1) * (3*2) * (4*3) * (12*36) = 31104.
		

Crossrefs

Programs

  • Magma
    [&*[&+ [c: c in Divisors(d)] * &*[c: c in Divisors(d)]: d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    Table[Times@@(DivisorSigma[1,#]Times@@Divisors[#]&/@Divisors[n]),{n,30}] (* Harvey P. Dale, Dec 10 2024 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=1, #d, my(dd=divisors(d[k])); vecsum(dd)*vecprod(dd)); \\ Michel Marcus, Apr 25 2019

Formula

a(n) = Product_{d|n} sigma(d) * Product_{d|n} pod(d) = A206032(n) * A266265(n).
a(p) = p*(p+1) for p = primes (A000040).
Showing 1-10 of 14 results. Next