A258455 Divisorial primes: primes p of the form p = 1 + Product_{d|k} d for some k.
2, 3, 37, 101, 197, 677, 5477, 8837, 17957, 21317, 42437, 98597, 106277, 148997, 217157, 331777, 401957, 454277, 1196837, 1378277, 1674437, 1705637, 1833317, 1865957, 2390117, 2735717, 3118757, 3147077, 3587237, 3865157, 4104677, 4519877, 4726277, 5410277, 6728837
Offset: 1
Keywords
Examples
The prime 37 is in sequence because there is n = 6 with divisors 1, 2, 3, 6 such that 6*3*2*1 + 1 = 37.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Programs
-
Magma
Set(Sort([&*(Divisors(n))+1: n in [1..1000000] | IsPrime(&*(Divisors(n))+1)]));
-
Maple
N:= 10^8: # to get all terms <= N K:= floor(sqrt(N)): sort(convert(select(t -> t <= N and isprime(t),{2,seq(convert(numtheory:-divisors(k),`*`)+1,k=2..K,2)}),list)); # Robert Israel, Jun 08 2015
-
Mathematica
terms = 35; n0 = 1000; Clear[f]; f[nmax_] := f[nmax] = Reap[For[n = 1, n <= nmax, n++, If[PrimeQ[p = Times @@ Divisors[n] + 1], Sow[p]]]][[2, 1]] // Sort // Take[#, terms]&; f[n0]; f[nmax = 2*n0]; While[f[nmax] != f[nmax/2], Print[nmax]; nmax = 2*nmax]; f[nmax] (* Jean-François Alcover, May 31 2015 *) Take[Sort[Select[Table[Times@@Divisors[n]+1,{n,3000}],PrimeQ]],40] (* Harvey P. Dale, Apr 18 2018 *)
-
PARI
list(lim)=my(v=List()); lim\=1; for(n=1,sqrtint(lim-1), my(d=divisors(n), t=prod(i=2,#d,d[i])+1); if(t<=lim && isprime(t), listput(v, t))); Set(v) \\ Charles R Greathouse IV, Jun 08 2015
Comments