A007963 Number of (unordered) ways of writing 2n+1 as a sum of 3 odd primes.
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 6, 8, 7, 9, 10, 10, 10, 11, 12, 12, 14, 16, 14, 16, 16, 16, 18, 20, 20, 20, 21, 21, 21, 27, 24, 25, 28, 27, 28, 33, 29, 32, 35, 34, 30, 37, 36, 34, 42, 38, 36, 46, 42, 42, 50, 46, 47, 53, 50, 45, 56, 54, 46, 62, 53, 48, 64, 59, 55, 68, 61, 59, 68
Offset: 0
Keywords
Examples
a(10) = 4 because 21 = 3+5+13 = 3+7+11 = 5+5+11 = 7+7+7.
References
- George E. Andrews, Number Theory (NY, Dover, 1994), page 111.
- Ivars Peterson, The Mathematical Tourist (NY, W. H. Freeman, 1998), pages 35-37.
- Paulo Ribenboim, "VI, Goldbach's famous conjecture," The New Book of Prime Number Records, 3rd ed. (NY, Springer, 1996), pages 291-299.
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- H. A. Helfgott, Minor arcs for Goldbach's problem, arXiv:1205.5252 [math.NT], 2012.
- H. A. Helfgott, Major arcs for Goldbach's theorem, arXiv:1305.2897 [math.NT], 2013.
- H. A. Helfgott, The ternary Goldbach conjecture is true, arxiv:1312.7748 [math.NT], 2013.
- H. A. Helfgott, The ternary Goldbach problem, arXiv:1404.2224 [math.NT], 2014.
- F. Smarandache, Only Problems, Not Solutions!.
- Index entries for sequences related to Goldbach conjecture
Programs
-
Maple
A007963 := proc(n) local a,i,j,k,p,q,r ; a := 0 ; for i from 2 do p := ithprime(i) ; for j from i do q := ithprime(j) ; for k from j do r := ithprime(k) ; if p+q+r = 2*n+1 then a := a+1 ; elif p+q+r > 2*n+1 then break; end if; end do: if p+2*q > 2*n+1 then break; end if; end do: if 3*p > 2*n+1 then break; end if; end do: return a; end proc: seq(A007963(n),n=0..30) ; # R. J. Mathar, Sep 06 2014
-
Mathematica
nn = 75; ps = Prime[Range[2, nn + 1]]; c = Flatten[Table[If[i >= j >= k, i + j + k, 0], {i, ps}, {j, ps}, {k, ps}]]; Join[{0, 0, 0, 0}, Transpose[Take[Rest[Sort[Tally[c]]], nn+2]][[2]]] (* T. D. Noe, Apr 08 2014 *)
-
PARI
a(n)=my(k=2*n+1,s,t); forprime(p=(k+2)\3,k-6, t=k-p; forprime(q=t\2,min(t-3,p), if(isprime(t-q), s++))); s \\ Charles R Greathouse IV, Mar 20 2017
-
Perl
use ntheory ":all"; sub a007963 { my($n,$c)=(shift,0); forpart { $c++ if vecall { is_prime($) } @; } $n,{n=>3,amin=>3}; $c; } say "$ ",a007963(2*$+1) for 0..100; # Dana Jacobsen, Mar 19 2017
-
Sage
def A007963(n): c = 0 for p in Partitions(n, length = 3): b = True for t in p: b = is_prime(t) and t > 2 if not b: break if b : c = c + 1 return c [A007963(2*n+1) for n in (0..77)] # Peter Luschny, May 18 2013
Extensions
Corrected and extended by David W. Wilson
Comments