A007967 Second factor in happy factorization of n.
0, 1, 2, 3, 2, 5, 3, 1, 4, 3, 10, 11, 4, 13, 2, 5, 4, 17, 9, 19, 5, 7, 11, 1, 6, 5, 26, 27, 4, 29, 6, 1, 2, 3, 2, 7, 6, 37, 19, 13, 20, 41, 7, 43, 4, 9, 2, 1, 8, 7, 50, 51, 13, 53, 27, 5, 8, 19, 58, 59, 4, 61, 2, 9, 8, 65, 33, 67, 17, 3, 14, 1, 9, 73, 74, 3, 4, 11, 3, 1, 10, 9, 82, 83
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..300
- J. H. Conway, On Happy Factorizations, J. Integer Sequences, Vol. 1, 1998, #1.
- Initial Happy Factorization Data
Programs
-
Haskell
import Data.List (genericIndex) a007967 n = genericIndex a007967_list n a007967_list = map snd hCouples -- Pairs hCouples are defined in A007968. -- Reinhard Zumkeller, Oct 11 2015
-
Mathematica
r[b_, c_, d_] := (red = Reduce[x > 0 && y > 0 && b*x^2 + d == c*y^2, {x, y}, Integers] /. C[1] -> 1 // Simplify; If[Head[red] === Or, red[[1]], red]); f[n_] := f[n] = If[IntegerQ[rn = Sqrt[n]], {0, rn, rn, rn, rn}, Catch[Do[b = bc[[1]]; c = bc[[2]]; If[c > 1 && (r0 = r[b, c, 1]) =!= False, rr = ToRules[r0]; x0 = x /. rr; y0 = y /. rr; Throw[{1, b, c, x0, y0}]]; If[b > 1 && (r0 = r[c, b, 1]) =!= False, rr = ToRules[r0]; x0 = x /. rr; y0 = y /. rr; Throw[{1, c, b, x0, y0}]]; If[(r0 = r[b, c, 2]) =!= False, rr = ToRules[r0]; x0 = x /. rr; y0 = y /. rr; If[OddQ[x0] && OddQ[y0], Throw[{2, b, c, x0, y0}]]]; If[(r0 = r[c, b, 2]) =!= False, rr = ToRules[r0]; x0 = x /. rr; y0 = y /. rr; If[OddQ[x0] && OddQ[y0], Throw[{2, c, b, x0, y0}]]];, {bc, Union[Sort[{#, n/#}] & /@ Divisors[n]]}]]];a[n_] := f[n][[3]]; A007967 = Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 90}] (* Jean-François Alcover, Sep 18 2015 *)
Comments